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3. Weather/climate model application 
The WRF mesoscale meteorological model is run operationally on the University of 
Canterbury’s high performance computing facility. In this project, a series of model runs were 
conducted for the Marlborough region to select the most appropriate parameterisation schemes 
for this specific application. After the tests were completed, the model was then set up to run 
on an operational basis during the grapevine growing season, providing daily weather 
predictions for two vineyard regions (Marlborough and Waipara) in the form of hourly maps of 
forecast winds and temperature, as well as daily maps of accumulated bioclimatic indices. A 
prototype web site was established early in the 2013-14 growing season to display the results 
in the form of maps and graphs, and the process of model validation has been running in parallel 
since this time. 

3.1 VALIDATION OF THE HIGH-RESOLUTION WEATHER AND CLIMATE MODEL 
IN THE MARLBOROUGH VINEYARD REGION USING THE ENHANCED DATA 
NETWORK  

Temperature is the main variable of interest in relation to impacts on viticulture, so the model 
validation process focused primarily on assessing the ability of the WRF model to reproduce 
mean daily temperature over the Marlborough region. Figure 25 and Table 5 provide a summary 
of the validation statistics, which shows that the WRF model had a relatively small cold bias 
during the 2013-14 growing season, but that the model simulations were highly correlated with 
observations from the automatic weather station network (see Figure 6 for the locations of sites 
mentioned in Table 5 and the following text). The index of agreement is a internationally 
recognised measure of model performance (Willmott 1982, 1985) that indicates that the WRF 
model was able to accurately reproduce mean daily temperatures at most sites in the 
Marlborough region. The cold bias is reasonably uniform (between about -0.6 to -1.6°C) in the 
more Wairau Valley but appears to increase with distance inland in the Awatere Valley. 
Bandalero stands out as the site for which WRF has the coldest bias (-2.18°C) – that is, the 
model under-predicts the temperature at this site.  This is likely to be the result of the complex 
terrain surrounding this site, which is located at a narrow constriction in the Wairau Valley. At 
1 km resolution, WRF is unable to fully represent the effects of this constriction on atmospheric 
processes, such as the acceleration of cold air drainage through the valley at this point. Jet-like 
structures created by narrowing of the valley would increase mechanical mixing of air close to 
the surface and cause the observed temperature to be higher than at other valley-floor locations. 
The effect of model resolution on the ability to represent fine scale variations in meteorology 
was previously acknowledged by Bonnardot and Cautenet (2009) in a similar modelling study 
in South Africa. In contrast, the most coastal site (Blind River Reserve) shows a slight warm 
bias (0.49°C). This site is so close to the coastline that, in this case, the effect of WRF model 
resolution (1 km) appears to be that the grid cell surrounding the site is considered to have the 
surface characteristics of the sea. This would mean that the bias is likely to vary seasonally in 
response to seasonal changes in the temperature difference between land and sea. Figure 26 
shows that this is indeed the case, with this site showing a more positive bias early and late in 
the season, with a negative bias in December (mid-season). Overall, the monthly analysis of 
model bias shows that the WRF model simulations of mean daily air temperature appear to be 
closer to observations during the early and later parts of the season, with the greatest negative 
bias at all sites occurring during December (Figure 26). This corresponds with a general 
tendency for the WRF model to produce a lower amplitude in diurnal temperature variations 
than is actually observed at most sites (extremes are moderated). This appears to translate to a 
lower seasonal amplitude in temperature, which would mean that WRF simulated temperatures 
would be closer to observed values during the intermediate seasons (i.e. in September and 
March, as shown in Figure 26). 
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Table 5: Validation statistics for mean daily air temperature for the WRF model runs, 
September 2013-April 2014 (BR Reserve = Blind River Reserve). RMSE = root mean square 
error, R = Pearson’s correlation coefficient, IOA = Index of Agreement (Willmott 1982, 1985), 
mean bias = mean modelled minus mean observed. 
 

Station 
Mean 
Obs 

Mean 
Model 

St. Dev. 
Obs 

St. Dev. 
Model RMSE R IoA 

Mean 
bias 

Bandalero 14.73 12.54 3.19 2.70 3.04 0.75 0.76 -2.18 
Ben Morven 15.03 14.38 3.14 2.65 2.13 0.77 0.85 -0.64 
Blind River 14.71 14.03 3.14 2.33 2.27 0.72 0.82 -0.68 
Booker 14.81 13.92 3.11 2.60 2.16 0.77 0.85 -0.89 
BR Reserve 14.87 15.35 3.17 2.01 2.40 0.67 0.77 0.49 
Lower Wairau 15.61 14.37 2.76 2.44 2.08 0.70 0.80 -1.24 
Mt. Riley 15.53 13.88 3.03 2.54 2.26 0.78 0.83 -1.65 
Omaka Valley 14.96 14.06 3.14 2.62 2.19 0.77 0.85 -0.89 
Seddon Vineyard 14.12 12.95 3.43 2.61 2.82 0.72 0.78 -1.17 
Taylor’s Pass 15.41 13.55 3.06 2.43 2.79 0.60 0.70 -1.86 
Waihopai 14.52 13.83 3.29 2.65 2.24 0.76 0.85 -0.69 

 
 

 
 
Figure 25: Mean daily air temperature bias for the WRF model during the whole growing 
season September 2013 to April 2014. Site names: BAN = Bandalero, WAI = Waihopai Valley, 
OMK = Omaka Valley, BOK = Booker, BEN = Ben Morven, LWV = Lower Wairau Valley, 
MTR = Mt. Riley, TAY = Taylor’s Pass, SED = Seddon Vineyard, BLR = Blind River and 
BRR = Blind River Reserve. 
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Figure 26: Mean daily air temperature bias for the WRF model during individual months during 
the growing season September 2013 to April 2014 (site names in Figure 25). 
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3.2 HIGH-RESOLUTION WEATHER AND CLIMATE MAPPING OF THE 
MARLBOROUGH VINEYARD REGION AT A RANGE OF TIME SCALES  

The WRF model has been running operationally twice daily since early in the 2013-2014 
growing season, providing hourly forecast maps over a 24-hour period of near-surface 
temperature and wind (Figure 27) which are automatically uploaded to the project web site 
(www.wineclimate.co.nz). These maps are designed to provide local wine-producers with 
short-term weather predictions for the local area for use in day-to-day vineyard management. 
 

 
 
Figure 27: Example of an operational output map of hourly temperature and wind from the 
Weather Research and Forecasting (WRF) model for the Marlborough region, 1600h on 4 
March 2014. 
 
It has also been possible to undertake a retrospective analysis of the hourly and daily weather 
variability experienced across the vineyard region by running the WRF model for the growing 
seasons since 2008-9. Figures 28, 29 and 30 provide maps of the key temperature variables of 
significance to viticulture (daily maximum, minimum and mean temperature) obtained at 1 km 
resolution from the WRF model across the region averaged for the six growing seasons from 
2008-9 onwards, while inter-season variability is shown by the panels of six maps provided in 
Appendix A. The temperature maps show the strong influence of topography and distance from 
the sea on the spatial pattern. In the latter case, there is a narrow coastal strip within which 
temperatures are strongly affected by the sea. As a result, the highest mean maximum 
temperatures over the growing season tend to occur in the central sections of the Wairau and 
Awatere Valleys (see Figure 2 for locations), decreasing inland, towards the coast, and with 
altitude. The most important impression provided by the seasonal maps (Appendix A) is that 
the growing seasons since 2008-9 have experienced relatively small inter-seasonal variability 
compared to earlier periods. This is reflected by the temperature trends in all of New Zealand’s 
vineyard regions, as shown earlier in Figure 23. Inter-seasonal variability in maximum 
temperatures is largely represented by only a subtle change to the spatial patterns. The growing 
seasons 2008-9 and 2012-13 show the largest areas of mean maximum temperatures  > 20°C in 
the Wairau Valley, with 2011-12 and 2013-14 showing lower values (Figures A1d and f). Subtle 
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changes are also evident in the gradient of maximum temperatures along the coastal strip, which 
is weakest in 2011-12 and 1012-13 (Figures A1d and e). 
The spatial patterns of mean minimum temperature over the growing season shown in Figure 
A2 (Appendix A) also indicate the influence of topography and distance from sea, with coastal 
regions consistently experiencing higher values (> 12°C) while more inland parts of the Wairau 
Valley have lower values (< 8 or 9°C). Interestingly, the southeastern part of the region near 
Cape Campbell has consistently higher minimum temperatures (Figure 29 and Figure A2 in 
Appendix A). As for maximum temperatures, interseasonal variations in minimum temperature 
are subtle, with 2011-12 showing lower minimums across the region (Figure A2d), 2013-14 
having higher average minimum temperatures (Figure A2f), with other years somewhere 
between and minor variations from year to year. 

The spatial patterns of mean daily temperature obtained from the WRF model for the growing 
seasons since 2008-9 show a similar overall pattern to the other temperature maps, with 
temperatures generally > 15°C along the coast, with > 14°C over the bottoms of the two main 
valleys, and much of the rest of the area covered by vineyards experiencing > 13°C (Figure 30). 
Again, the inter-seasonal differences are small with slight changes in the extent of the region 
>14°C (Figure A3 in Appendix A), although in the cold growing season of 2011-12 the mean 
temperature is mostly less than 14°C across the whole region (Figure A3e), except for the 
southeastern corner which is predicted to have had >14°C (following the highway). 

The temperature maps in Figures 28-30 and Appendix A suggest that the Wairau Valley to the 
north experiences greater temperature ranges than the Awatere Valley further south (see Figure 
2 for locations), although they both have a similar mean temperature over the growing season. 
The least extreme temperature range appears to occur in the southeastern section, inland from 
Cape Campbell. These conclusions will be evaluated further through comparison of the WRF 
hourly meteorological data with observations from a range of weather stations across the region. 

 
 
Figure 28: Map of daily average maximum temperature (ºC) averaged over the six growing 
seasons from 2008-9 to 2013-14 (1 October to 30 April) for the Marlborough region based on 
WRF output.  
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Figure 29: Map of daily average minimum temperature (ºC) averaged over the six growing 
seasons from 2008-9 to 2013-14 (1 October to 30 April) for the Marlborough region based on 
WRF output. 
 

 
 
Figure 30: Map of growing season temperature (GST – ºC) averaged over the six growing 
seasons from 2008-9 to 2013-14 (1 October to 30 April) for the Marlborough region based on 
WRF output. 
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3.3 HIGH-RESOLUTION MAPPING OF BIOCLIMATIC INDICES IN THE 
MARLBOROUGH REGION BASED ON MODEL OUTPUT  

In addition to providing maps of hourly wind and temperature for the Marlborough region based 
on WRF output data, the daily mean air temperatures derived from the hourly data are used to 
produce a 1 km resolution map of growing degree-days (GDDs) that is updated at the end of 
each day throughout the growing season. Figure 31 provides an example of a map produced 
during the 2014-15 growing season. 
 

 
Figure 31: Example of growing degree-day (GDD) accumulation map of the Marlborough 
vineyard region for 29 August 2013 to 30 April 2014 derived using the Grapevine Flowering 
Véraison model (threshold = 0°C) based on Weather Research and Forecasting model 
temperatures. 
 
Maps of three bioclimatic indices (GDD accumulation from the GFV model, the Huglin Index 
and the Cool Nights index) have been averaged over the six growing seasons since 2008-9 
based on retrospective WRF model runs, as shown in Figure 32. They provide an indication of 
the spatial variation of different aspects of the thermal regime, with the GFV model focused on 
the relationship between air temperature and key stages in grapevine development, the Huglin 
Index providing a general categorization of the thermal environment and its suitability for grape 
production, and the Cool Nights index providing an assessment of the influence of cool 
nocturnal temperatures on aroma development in the grapes (Philippe et al. 2013). Not 
surprisingly, the spatial patterns shown by the GFV GDD accumulation and the Huglin Index 
(Figures 32a and b) are generally similar as they are both based on mean daily temperatures, 
with the Wairau and Awatere Valleys standing out as the warmer parts of the region. The main 
difference appears to be along the narrow coastal strip, where the marine influence appears 
more marked in the pattern of GFV GDD with the Huglin Index showing a more gradual 
increase with distance inland. The Huglin Index map suggests that most of the current area 
occupied by vineyards falls into either the ‘very cool’ (1200-1500) or ‘cool’ (1500-1800) 
categories (Figure 32b). The map of the Cool Nights index (Figure 32c) also reflects the cool 
climate environment of the Marlborough region in the final weeks before harvest, with most of 
the area falling into the ‘cold nights’ (≤ 12°C), with the coastal fringe being classified as ‘very 
fresh nights’ (> 12 and ≤ 14°C). These are the conditions that produce the characteristic aromas 
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associated with Marlborough Sauvignon blanc that make it internationally popular. 
 
The bioclimatic index maps for individual seasons are provided in Appendix B, indicating the 
variability between different growing seasons of the thermal environment that creates inter-
annual differences in wine style and quality. As mentioned previously, the lack of strong inter-
seasonal variability in mean temperatures since about 2000 is clearly evident, so that the spatial 
variability created by the terrain and distance from the sea appears to be significantly greater 
than the variation between seasons. The 2011-12 season was the coolest overall (Figures B1d 
and B2d), while the 2008-9 (Figures B1a and B2a) and 2012-13 (Figures B1e and B2e) seasons 
stand out as the warmest. In 2012-13, the Huglin Index suggests that the coastal strip was 
particularly warm, in contrast to other seasons when it appears to have been consistently cooler 
than inland areas (Figure B2). 
 
The higher GFV GDD values that occur consistently along the coast appear to contrast with the 
situation in some other parts of the world, such as the Western Cape region of South Africa, 
where the sea breeze acts to moderate daytime temperatures (Bonnardot et al. 2002, 2005). 
However, the Marlborough region of New Zealand is an ideal environment for cool climate 
grape varieties, as it is located further south at around 41.9º S (cf. 34º S of the Western Cape) 
and is subject to greater nocturnal cooling inland due to the combination of the complex terrain 
and its situation in relation to prevailing weather systems. When averaged over the growing 
season, this nocturnal cooling appears to be reduced in the coastal strip under the influence of 
maritime effects, so that daily average temperatures are slightly higher, creating a strip of higher 
GDD accumulation along the coast. This effect will be investigated further in subsequent 
research.  
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a) 

 
b) 

 
c) 

 
Figure 32: Maps of bioclimatic indices for the Marlborough vineyard region averaged over 
the six growing seasons from 2008-9 to 2013-14 based on Weather Research and Forecasting 
model temperatures: a) GDD accumulation from the GFV model (period = 29 August to 30 
April, threshold = 0ºC); b) the Huglin index (period = 1 October to 31 March, threshold = 
10ºC); and c) the Cool Nights index (March average minimum temperature). 
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4. Application of modelling techniques to prediction of key 
developmental phases of the grapevine (flowering and 
véraison) using the new Grapevine Flowering Véraison 
model 

As mentioned earlier, the GFV phenological model has been integrated with the WRF 
meteorological model to provide the basis for a high resolution assessment of the relationship 
between climate and grapevine response. Simulation and/or prediction of the key phenological 
stages of flowering and véraison has been the initial focus of this part of the work, and has 
involved the analysis of WRF model output alongside field data obtained from automatic 
weather stations and detailed monitoring of grapevine response (Figure 33 and Table 6). The 
flowering stage tends to develop at each site over several days as a function of the prevailing 
weather conditions, and Figure 34 illustrates the typical differences that can be experienced 
between sites in term of both the date and duration of flowering. The date in each growing 
season on which 50% of the flowering has taken place is used in this study to compare grapevine 
development between sites and seasons. Temperatures at this time have important 
consequences for vine development, affecting fruit set in the current growing season and bunch 
number per shoot in the subsequent growing seasons (Trought 2005, Vasconcelos et al. 2009). 
 

 
Figure 33: Satellite map of Marlborough, New Zealand, showing location of sites of Sauvignon 
blanc phenological observations. Pins: sites used for both seasons for phenology (2013-14, 
2014-15). Star symbols: sites used in 2013-14 only. Square symbol: site used for 2014-15 only. 
Each phenological site has an Automated Weather Station (AWS) on site or close by (the 
greatest distance between a phenological site and AWS is 2.9 km, and the average distance is 
0.6 km). 
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Figure 34: Sauvignon blanc flowering development for 11 sites located close to automatic 
weather stations in the Marlborough vineyard region in November/December 2013 based on 
visual observations. Sites are ordered from the earliest to reach 10% flowering to the latest. All 
curves were fitted to the Gompertz function, , where the value 100 corresponds 
to the maximum percentage for flowering, b corresponds to the rate constant, m is the inflection 
point on the curve, and x is the date. 
Table 6: Comparison of observations of Sauvignon blanc flowering for the 2013-14 season 
with simulations generated from the Grapevine Flowering Véraison (GFV) model using data 
obtained from Automated Weather Stations (AWS) and Weather Research and Forecasting 
(WRF) model output. Note the calculations for GFV started on 29 August in the Southern 
Hemisphere. 

Site 

Observed date 
of flowering 

(50%) 

Simulated 
flowering 

date using 
AWS data 

Difference 
between GFV 

simulation using 
AWS recorded 

data and  
observed date of 
flowering (days) 

Simulated 
flowering 

date using 
WRF 

simulated 
data 

Difference 
between GFV 

simulation using 
WRF simulated 

data and 
observed date of 
flowering (days) 

RPC 2/12/2013 3/12/2013 1 2/12/2013 0 
MRL 3/12/2013 5/12/2013 2 4/12/2013 1 
BOK† 4/12/2013 5/12/2013 1 5/12/2013 1 
SCR/LWV 4/12/2013 3/12/2013 -1 2/12/2013 -2 
OYB 4/12/2013 4/12/2013 0 4/12/2013 0 
SEA 6/12/2013 4/12/2013 -2 3/12/2013 -3 
SED 6/12/2013 8/12/2013 2 8/12/2013 2 
WRV 8/12/2013 8/12/2013 0 7/12/2013 -1 
WAU 9/12/2013 8/12/2013 -1 5/12/2013 -4 
TOH 11/12/2013 9/12/2013 -2 8/12/2013 -3 

†BOK corresponds to the phenology site from the Plant and Food Research phenology network and the Plant and Food 
Meteorological station also known as BRA. The Villa phenology site was omitted for analysis with the Grapevine Flowering 
Véraison due to the absence of a suitable Automated Weather Station. 
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A major advantage of using output from the WRF model is that temperature data are available 
on a 1-km grid across the vineyard region. This temperature data set also allows the derivation 
of simulated flowering dates for Sauvignon blanc from the GFV model based on accumulated 
growing degree-days, as shown in Table 6 and Figure 35. 

 

Figure 35: Map of the predicted date of flowering Sauvignon blanc based on accumulated 
degree-day values derived from the Grapevine Flowering Véraison model (F* = 1282) for the 
2013-14 growing season across the Marlborough region, using the Weather Research and 
Forecasting model temperatures at 1 km spatial resolution. 
 
As with the maps of mean temperatures and derived bioclimatic indices, the 1-km resolution 
temperature data from the WRF model has been used as input to the GFV phenological model 
to provide maps of predicted dates of Sauvignon blanc flowering (F* = 1282) and véraison (F* 
= 2528) during the growing seasons since 2008-9. Similar to the maps of temperature and 
derived bioclimatic indices, the spatial pattern of predicted dates of flowering averaged over all 
six seasons is dominated by the effects of terrain and distance from the sea (Figure 36), and 
apart from the strip along the coast, there is a general tendency for flowering in the Wairau 
Valley to occur slightly earlier than for the Awatere Valley (see Figure 2 for locations). The 
map of predicted dates of véraison averaged over the six seasons shows significantly less spatial 
variation, and even the coastal strip does not appear to stand out as much. 
The predicted flowering dates for 2013-2014 are much earlier than for other seasons (Figure 
C1f in Appendix C), with those for the 2011-12 and 2010-11 growing seasons the latest 
(Figures C1d and c). The maps of predicted dates of véraison show a tendency for véraison to 
occur slightly earlier in the Wairau Valley compared with the Awatere Valley (Figure C2 and 
Figure 2 for locations), with more significant differences between seasons than shown for 
flowering. The earliest véraison over the whole region appear to have occurred in the 2008-9 
and 2013-14 growing seasons (Figures C2a and f), although in 2012-13 the coastal strip is 
simulated to have had a very early véraison (Figure C2e).  The latest véraison is simulated to 
have occurred in the 2011-12 growing season followed by 2010-11 (Figure C2d and c). As for 
the temperature and bioclimatic index maps, the WRF simulated dates of flowering and 
véraison will be compared with observations from vineyard records where available in future 
research. 
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a)

 
b) 

 
 
Figure 36: Maps of the predicted dates of a) flowering and b) véraison for Sauvignon blanc for 
the Marlborough region based on WRF temperatures at 1 km resolution averaged over the six 
growing seasons from 2008-9 to 2013-14, based on the GFV F* values of 1282 and 2528, 
respectively. 
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5. Development of project web site, including graphical tools 
for the Marlborough and Waipara regions providing hourly 
and longer-term information for use by the wine industry 

A web site (www.wineclimate.co.nz) has been set up as one of the outcomes of this research 
project to deliver the results of the research to the stakeholder and scientific communities. The 
aim of the web site is to provide a range of different sorts of information, including: 

1. New knowledge about effects of climatic variability on viticulture in New Zealand, 
suggesting possible strategies for adaptation to climate change. 

2. Hourly maps of short-term weather forecast information (particularly temperature and 
wind) at vineyard scale (24 hour predictions updated every 12 hours) to assist with 
decision-making on a day-to-day basis. 

3. Daily updated maps at 1 km resolution of accumulated GDD totals and isochrones of 
dates of flowering and véraison based on the WRF meteorological model and GFV 
phenological model during the growing season to assist with longer-term vineyard 
management. 

4. Graphs and maps of temperature and derived bioclimatic indices allowing comparison 
between seasons of the spatial patterns and temporal development of the thermal climate 
and its potential effect on grapevine development.  

5. Maps of a range of bioclimatic indices to identify the relationship between variability 
in local climate and different grape varieties. The GFV model can be used to investigate 
such relationships as model parameters have been determined for almost 100 different 
varieties (Parker et al. 2013). 

 
Data in the form of various maps and graphs are mainly provided for the Marlborough region, 
although prototype maps for Waipara are also presented and provision of information for other 
regions is also planned, although this is likely to depend on available funding. Figures 38 to 41 
provide some examples images from the project web pages. 
 

 

Figure 38: Home page of the Wine Climate Research web pages (www.wineclimate.co.nz). 

http://www.wineclimate.co.nz/
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Figure 39: Growing degree-day anomaly graph for Blenheim Airport from the Wine Climate 
Research web pages (www.wineclimate.co.nz). 
 

 

Figure 40: Example forecast map derived from WRF output for the Waipara vineyard region 
from the Wine Climate Research web pages (www.wineclimate.co.nz). 
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Figure 41: Example growing degree-day map derived from WRF output for the Waipara 
vineyard region from the Wine Climate Research web pages (www.wineclimate.co.nz). 
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6. Adaptation strategies for responding to weather/climate 
variability 

6.1 INTRODUCTION 
Climate change has the potential to impact on most forms of agriculture. However, the greatest 
economic cost may be in perennial crops, such as grapevines, where vineyards may last up to 
50 years from planting, and long-term investment in infrastructure may influence the viability 
of the industry. It is not only the investment in vineyards that may be at risk, but also the 
processing wineries, which are traditionally located at or near the areas of production.  Climate 
change also has the potential to break the traditional link between a region and variety, 
potentially causing a shift in wine regions (Neethling et al. 2012, Moriondo et al. 2013). Many 
classical winegrowing regions are associated with specific grapevine varieties and styles of 
wine. In many European regions, the geographic indications (appellations) only permit certain 
varieties to be grown.  For instance, INAO (Institut National d’Origine et de la Qualité) which 
regulates the French Appellation d’Origine Contrôlée (AOC) system defines which grape 
varieties may be grown in the appellations. For example, it allows only four varieties in the 
Burgundy appellation (Pinot noir, Gamay, Aligoté and Chardonnay) and three in Champagne 
(Pinot noir, Pinot meunier and Chardonnay).  While other regions may not be controlled by 
legislation, a strong association with region (or country) and wine variety may be recognized 
(e.g. New Zealand/Marlborough: Sauvignon blanc, South Australia: Shiraz). However, the rate 
of change in temperature does not appear to be the same in the various major wine growing 
regions of the world (Jones et al. 2005) and consequently how industries manage change will 
vary. 
The key climate change factors that are predicted to impact on grapevine growth and 
development are:  

1. A progressive increase in temperature 
2. A progressive increase in mean annual atmospheric carbon dioxide concentrations  
3. A change in rainfall patterns 
4. Greater variability in weather patterns  
5. A rise in sea level 

Separating and determining the relative importance of the three environmental factors 
(temperature, CO2 concentration and rainfall) that are likely to be affected by climate change is 
difficult. For example, an increase in carbon dioxide concentration may enhance photosynthetic 
rates and at the same time improve the water use efficiency (the fixation of photosynthates per 
unit water transpiration) (Bindi et al. 1997). This in turn may stimulate grapevine production 
without causing negative effects on the quality of grapes and/or wine (Bindi et al. 1995). 
However, the consequence of the CO2 increase will depend on the location of the vineyard and 
the variety being grown (Bindi et al. 1995). The interaction with changes in temperature is still 
unclear, but higher yield (fruit weight to leaf area ratio) may affect phenology (see Section 6.4). 
Likewise, the consequence of climate change for rainfall patterns is still being debated. 
However, a decrease in seasonal rainfall may be accommodated by the selection of rootstocks 
with greater drought tolerance, such as 1103 Paulsen or 110 Richter (Serra et al. 2014) and/or 
greater regional water storage of winter river flows.   
While grapevine phenology at any particular location may be influenced by environmental 
factors such as soil type (in particular soil water holding capacity and/or texture) (Tesic et al. 
2001, Trought and Bramley 2011), climate warming is likely to have a similar effect across 
different soil types and adjusting vineyard management to accommodate the consequences of 
climate change will be difficult. The strategies discussed here will predominantly (but not 
exclusively) focus on using canopy management to respond to an increase in temperature in 
Marlborough, which represents about 75% of the vineyard area of the New Zealand industry. 
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6.2 INCREASING TEMPERATURE 
The major viticultural regions of the world lie generally between latitudes 35° and 50°, within 
annual isotherms of 10 to 20°C (Jackson 2008). While it is not possible to define the ideal 
climate for fine wines, the best expression of a grapevine variety occurs when full ripeness is 
reached at the end of the growing season (van Leeuwen and Seguin 2006). Three climatic 
criteria are paramount for sustainable grape production: 

• An optimum heat requirement during the season to ripen grapes to a composition 
suitable to enable the winemaker to achieve the desired wine style. 

• Minimal frost risk during the growing season. 
• A distribution of rain that allows appropriate soil moisture during the growing season, 

but low risk during ripening when rain may induce fungal diseases. Rainfall for growth 
may be supplemented by irrigation, as is generally the case in New Zealand. 

As temperatures increase, vine phenology may be advanced, with the result that fruit will ripen 
earlier and under warmer conditions (Schultz 2000, Jones et al. 2005, Jones 2006, Trought et 
al. 2014). If the environment is too warm, the development of flavour may be decoupled from 
changes in sugar and acidity (Duchêne et al. 2014) and secondary metabolites (Sadras and 
Moran 2012) with an adverse effect on the traditional wine flavour and aroma profiles and a 
negative effect on wine quality (Jones et al. 2005). In a recent survey of 52 Marlborough 
winegrowers and viticulturists (with average experience of 11.3 years), participants were asked 
to rate the characteristics of the juices used to make a “typical Marlborough Sauvignon blanc”. 
The optimum soluble solids, titratable acidity (tartaric acid equivalent) and pH values were 22.5 
oBrix, 9.0 g/L and pH 3.2 respectively, with a relative weighting of 49, 28 and 23% (Trought 
and Bramley 2011). Marlborough generally experiences a prolonged, cool ripening, which 
enables fruit to retain a characteristic acidity, while at the same time developing a balance in 
the key secondary metabolites (e.g. methoxypyrazines and thiols). Warmer ripening could 
result in lower acidity and reduced Marlborough “typicality”. 

Differences between wine grape cultivars have been characterized by classifying varieties 
according to temperature grouping (Winkler 1948, Huglin 1978, Jackson and Cherry 1988, 
Gladstones 1992, Jones et al. 2005, Gladstones 2011). For example, Jackson and Cherry (1988) 
developed a Latitude Temperature Index (LTI) with the aim of associating grape varieties to 
specific climate conditions (see Table 7). The relative performance of the various variety 
classification systems is beyond the objectives of this report. However, these systems of 
temperature grouping are largely based on historic and traditional experience. For example, 
temperatures are defined by the variety traditionally grown in a particular area (which in turn 
may be controlled by legislation), rather than the reverse.  So Gewürztraminer may be defined 
as a variety grown in extra cool climates and Sauvignon blanc in warmer climates (see Table 
4; Jackson and Cherry 1988). However, in the newer wine growing regions (e.g. Marlborough), 
both varieties are grown successfully in adjacent vineyards, suggesting that some of the 
differentiation of the varieties into separate climate groups may be largely a function of where 
the varieties are traditionally grown, rather than related to a temperature dependent variable.  

The alternative, but not mutually exclusive method of classifying varieties is to determine the 
timing of key phenological stages of development and how this relates to accumulated 
temperatures (Huglin 1978, Parker et al. 2013, Duchêne et al. 2014). This approach enables 
phenological development of varieties in non-traditional grape growing regions (i.e. Riesling 
in Bordeaux or Cabernet Sauvignon in Marlborough) to be determined. However, this approach 
does not take into account differences in fruit composition for alternative wine styles (e.g. the 
soluble solids concentration for commercial Sauvignon blanc is generally lower than Pinot noir, 
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and that for Chardonnay/Pinot noir for sparkling wine will be lower than that required for table 
wine). 
 
Table 7: Grape varieties grouped by Latitude Temperature Index (LTI)1 according to ripening 
ability in different climates (Jackson and Cherry 1988). 
 

Group and  
Latitude Temperature Index 

Varieties 

Group A: LTI < 190  
      1.  very cool Gewürztraminer, Reichensteiner, Müller Thurgau 
      2.  cool Pinot gris, Pinot blanc, Pinot noir, Pinot meunier, Chardonnay (all these 

varieties may be grown for sparkling wine base). 
Auxerrois, Aligoté, Sylvaner, Chasselas 

Group B: cool-warm 
LTI 190-270 

Pinot noir, Riesling, Chardonnay (Table wines) 

Group C: warm  
LTI 270-380 

Sauvignon blanc, Sémillon, Cabernet Sauvignon, Merlot, Malbec 

Group D: warm-hot 
LTI >380 

Carignane, Grenache, Thompson seedless, Zinfandel 

1LTI was developed at Lincoln University by David Jackson and Neil Cherry. LTI = mean temperature of the warmest month x 
(60 – latitude). 
 
Marlborough autumns are typically cool and mostly frost free. This provides a drawn out 
ripening period enabling fruit to ripen and flavours to develop. It is suggested that relatively 
high acidity is one of the key characteristics in producing the distinctive style of Sauvignon 
blanc that New Zealand and, in particular, Marlborough has become famous for. The 
metabolism of malic acid (one of two predominant fruit acids) is greater under higher 
temperatures (Ruffner 1982, Reynolds et al. 1986). Higher temperatures during the ripening 
phase may decrease fruit acidity at a given concentration of soluble solids, and as a result 
changing the character of Marlborough Sauvignon blanc.   
Using daily Marlborough temperature data from 1987 to 2014, and the Grapevine Flowering 
Véraison model (Parker et al. 2011, Parker 2012, Parker et al. 2013) the dates of flowering, 
véraison (8.0 oBrix) and maturity (200 g/L sugar) of Sauvignon blanc in Marlborough, New 
Zealand are predicted to be on average 7 December, 17 February and 22 March, respectively 
(Trought et al. 2014) (Figure 42). Assuming an increase in mean daily temperature of 0.5°C, 
these dates would be advanced to 4 December, 14 February and 17 March, while a 2.0°C 
increase would advance the dates to 22 November, 26 January and 24 February, respectively. 
While a 0.5°C increase in temperature results in a small advance in phenology, most seasons 
would still fall within the current seasonal variation experienced in Marlborough. In contrast, a 
2.0°C increase would result in phenology well in advance of that currently experienced in 
Marlborough, apart from exceptionally warm seasons. For example, maturity date is predicted 
to be between 17 February and 1 March compared to current dates of 13 March to 31 March 
(10 to 90% of seasons). 

By applying the two warming scenarios mentioned above it could be expected that the time of 
the ripening period (véraison to harvest) would be advanced and therefore the temperatures 
experienced by vines during this period would differ (Figure 43). Currently in Marlborough, 
the mean daily temperature during ripening is 16.5°C. If mean daily temperatures increased by 
0.5 and 2.0°C the mean ripening temperatures would increase by 0.8 and 3.9°C, respectively. 
The higher ripening temperatures reflect a combination of the earlier ripening dates and the 
higher mean daily temperatures at that time of the year. The data suggest that Sauvignon blanc 
production in a Marlborough climate that had warmed by 0.5oC would be similar to that 
experienced in Hawke’s Bay today. Alternatively, changes in vine management to delay the 
onset of véraison by five days could accommodate a 0.5oC increase in temperature, with the 
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result that ripening temperatures (and potentially flavour and aroma profiles) would be similar 
to those of today. However, warming by 2.0oC would require relocation of Sauvignon blanc 
vineyards to higher latitudes and/or altitudes to maintain a wine profile similar to today. It seems 
likely that these vineyards would be replaced by other varieties, currently grown in warmer 
climates. Of course, by the time we experience a 2.0oC increase in temperature, tastes may also 
have changed. 
 

 
Figure 42:  Frequency of seasons (1987 to 2014) in which Sauvignon blanc is predicted to reach 
(a) flowering, (b) véraison and (c) maturity by a particular date in Marlborough using the 
Grapevine Flowering Véraison Model and daily temperature for current temperatures (●), 
current temperatures +0.5oC (○) and current temperatures +2.0oC (▲) (adapted from Trought 
et al. 2014). Gaussian 3-parameter curves were fitted using SigmaPlot 12.5.  
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Figure 43: Predicted mean daily temperatures during ripening of Sauvignon blanc (from 8 to 
20oBrix) using (a) current Marlborough (1987 to 2014) temperatures (●), current temperatures 
+0.5oC (○) and current temperatures +2.0oC (▲) and (b) current temperature (●), current 
temperatures +0.5oC + 5 day delay in veraison (○) and current temperatures +2.0oC + 5 day 
delay in véraison (▲) (adapted from Trought et al. 2014). Gaussian 3-parameter curves were 
fitted using SigmaPlot 12.5. 
 
 

6.3 FROSTS AND FROST VULNERABILITY 
Grapevines become vulnerable to frost when growth starts early in the spring.  A damaging 
frost shortly after budburst can result in a severe reduction in grapevine yield in the current 
season and additional pruning costs in the following season caused by difficulties in selecting 
appropriate canes (Trought et al. 1999). Any advance in the date of the last frost resulting from 
climate change is likely to be associated with an earlier budburst time, with the result that the 
frost risk is unlikely to change a great deal (Trought 2008).  This scenario assumes that daily 
maximum and minimum will be influenced in a similar way.  Should maximum daily 
temperatures increase to a relatively greater degree than minimum night-time temperatures, 
then budburst may be advanced more than the date of the last frost, so that the vulnerability of 
vineyards to spring frost damage may in fact be increased. Likewise, a change in the climate 
patterns in early spring, particularly if there is an increase in high pressure patterns (and thus 
clear skies at night) may increasing the frost risk to vines (as discussed earlier in Section 2). 
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6.4 POTENTIAL ADAPTION STRATEGIES TO COPE WITH CLIMATE CHANGE IN 
NEW ZEALAND VINEYARDS 

The alternative management strategies that might be considered to cope with climate change 
can be divided into two key areas (Figure 44).  First is the long-term adaptation of the vineyard, 
which generally involves either developing vineyards in new regions or replanting existing 
vineyards. Alternatively, short-term vine management may be adjusted to accommodate a 
seasonal change in temperature. In general, short-term management changes will have a 
relatively small effect on vine development, when compared to long-term adaptation practices, 
but decisions can be made on a seasonal basis. For example, canopy area may be reduced by 
trimming shoots lower in a warmer than average season. 

6.4.1 Long-term management changes 
Long-term management strategies largely focus on identifying new areas to plant existing 
grapevine varieties (generally at higher latitude or altitude), or changing the grapevine variety 
to match the existing area (Moriondo et al. 2013, Kenny and Harrison 1992). This may in some 
circumstances be achieved by identifying cooler vineyard areas within a geographic region 
(Anderson et al. 2012).  However, changing to new varieties in traditional vineyard appellations 
may prove to be difficult, in some cases requiring changes in legislation. In contrast, in wine 
producing regions where legislation does not control the varieties that may be grown, a shift in 
varieties may be easier (Anderson et al. 2012). For example, there is no control over which 
varieties can be grown in Marlborough, and to some extent the suitability of varieties has been 
determined by trial and error over the past 30 years. 
 
 

 
 
 
Figure 44: Potential vineyard adaptation strategies used to cope with climate change at the regional 
scale (long-term) or local/plot scale (short-term). 
 
Changing grapevine varieties and/or rootstock 
 
Unlike the traditional grapevine variety grouping models described above, the Grapevine 
Flowering Véraison (GFV) model describes the accumulated degree-days required by 
approximately 100 varieties to achieve specific stages of development (Parker et al. 2013).  
Table 4 shows the F* values for flowering and véraison for some key varieties. This enables 
the selection of appropriate varieties to be considered, taking into account a long-term change 
in temperature. The date of véraison is central to the suitability of varieties to a particular 
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environment and while the date of véraison is influenced by other factors such as extreme 
reductions in the leaf area to fruit weight ratio (Parker et al. 2014b), it is largely controlled by 
temperature. However, the rate of soluble solids accumulation from véraison onwards appears 
to reflect the leaf area to fruit weight ratio and be independent of variety (Sadras and Petrie 
2011a, 2011b, Parker 2012).  

While rootstock selection can influence berry quality parameters (Kodur et al. 2013) and 
reproductive performance (Kidman et al. 2014), many of these responses appear to be 
secondary effects resulting from differences in nutrients (in particular potassium) and water 
stress (reflecting differences in the rooting patterns of the different rootstocks; Swanepoel and 
Southey 1989). However, it would appear likely that under conditions of increased temperatures 
and an increase in the likelihood of water stress, a progressive shift will occur to more drought 
tolerant Vitis berlandieri x Vitis rupestris rootstocks (e.g. 1103 Paulsen or 110 Richter) and 
away from Vitis riparia based rootstocks (e.g. Schwartzman, 101-14 Mt and 3309 Couderc; 
Serra et al. 2014) that are  currently frequently used in New Zealand vineyards and that exhibit 
a more superficial rooting pattern. 

Research is currently attempting to produce cultivars and rootstocks that are better able to 
handle environmental changes associated with climate change. For example, new drought 
resistant rootstocks are being developed (rootstocks currently in use were generally developed 
in the 19th Century to combat Phylloxera in Europe). However, recently CSIRO Australia have 
been breeding rootstocks with greater drought tolerance that can be irrigated with saline water 
(Walker and Clingeleffer 2009, Walker et al. 2014). At the same time, grapevine breeding 
efforts have resulted in a range of new winegrape varieties (Reisch et al. 2014) with greater 
disease resistance and/or flavour and aroma profiles. These breeding efforts have used 
traditional breeding techniques, the identification of trait analysis using Next Generation 
Sequencing (see http://www.vitisgen.org/extension.html) and/or genetically modified plants 
(Webb et al. 2011). Only time will tell the extent to which industry will adopt these new 
varieties.  

6.4.2 Short-term management options 
An alternative approach to using long-term strategies to adapt to higher temperatures is to adopt 
management practices that may delay the development cycle within a season, in particular the 
date at which the ripening process starts (véraison).  While these practices can be adopted or 
not, depending on the vine development of any particular season, the effect on phenology is 
likely to be small, when compared to the long-term strategies. 

Manipulating development post-flowering 
Alternative methods of delaying the date of véraison include late spur-pruning, to delay vine 
phenology, or increasing the time from flowering to véraison either by: 1) trimming shoots or 
removing leaves to reduce the leaf area to fruit weight ratio; 2) slowing photosynthetic rates 
post-flowering by the application of anti-transpirants; or 3) the use of plant growth regulators. 

Reducing net vine photosynthesis of grapevines can significantly affect fruit development.  
Reducing photosynthesis pre-flowering (either by leaf removal, trimming shoots or the 
application of anti-transpirants that impede gas exchange through the leaf stomata (Anderson 
and Kreith 1978) can reduce fruit set and yield, advancing véraison and ripening (Caspari et al. 
1998, Palliotti et al. 2011). Similar treatments post-fruit set can delay the onset of véraison. For 
example, trimming the canopy of vines shortly after fruit set, to reduce canopy area to less than 
0.75 m2/kg fruit can increase the time from flowering to véraison date by approximately 5 days 
(Parker et al. 2014b).  Likewise, a 30% reduction in leaf area pre- or post-véraison has been 
seen to delay harvest date of Sangiovese grapevines by approximately seven days (Poni et al. 
2013). Similarly, trimming Grenache vines to reduce leaf area by between 30 and 60% delayed 
véraison date by approximately 17 days and harvest date by approximately 14 days, depending 

http://www.vitisgen.org/extension.html
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on the season (Martinez de Toda et al. 2014). Interestingly, the delayed harvest caused by the 
trimming treatment resulted in higher anthocyanin concentrations at the same soluble solids at 
harvest in both Grenache and Tempranillo (Martinez de Toda et al. 2014).  

Spur-pruning vines late in the winter (at about the time of bud-break) can delay the onset of 
bud-break by eight to 11 days (Dami et al. 1997, Martin and Dunn 2000, Friend 2005, Friend 
and Trought 2007) when compared to traditional mid-winter pruning.  This can in turn result in 
a delay in flowering and véraison dates of up to four or five days (Martin and Dunn 2000, Friend 
2005). While this may work, it means that vines would need to be pruned in a very limited time 
frame which may limit its application to small producers and not be feasible for large scale 
operations. 
More recently, pre-véraison applications of 1-naphthaleneacetic acid (NAA) have been shown 
to delay véraison by 12 to 40 days, with similar effects on the time taken for fruit to reach 20 
°Brix (Böettcher et al. 2011, Ziliotto et al. 2012). 

Manipulating sugar and acidity changes in developing fruit 
The rate of soluble solids accumulation and, as a consequence, the date at which a target soluble 
solids is achieved is strongly affected by the leaf area to fruit weight ratio (Poni et al. 2013, 
Parker et al. 2014b, Parker et al. 2014c). However, changes in the leaf area to fruit weight ratio 
has little effect on titratable acidity (Parker et al. 2014a, Parker et al. 2015). As a consequence, 
alternative methods to maintain fruit acidity may be needed, particularly as the degradation  of 
malic acid (one of two predominant fruit acids) is greater under higher temperatures. Shading 
bunches either by changing vine management to increase leaf cover  may result in significantly 
lower fruit temperatures, and an increase in fruit malic acid concentration and titratable acidity 
at harvest (Reynolds et al. 1986). Alternatively, the use of shade netting may provide an 
alternative method, although further research is needed to evaluate this strategy and its value in 
managing temperature changes resulting from climate change.  

The vine yield may in turn be moderated by the training system used (Figure 45). Training 
systems that produce higher yields can result in lower soluble solids at a particular date (Trought 
et al. 2009). However, as mentioned earlier, grapevine phenology may be influenced by other 
factors, and in this case the yield:soluble solids relationship may be influenced by soil water 
holding capacity. Vines that experience a degree of water stress ripen more slowly and at higher 
yields have lower soluble solids when compared to less stressed vines on higher water holding 
capacity soils. While the timing of ripening differs between seasons, the effect of grapevine 
yield is seen to remain consistent (data not shown). 
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Figure 45: Influence of training system and Sauvignon blanc vine yield on soluble solids at 
harvest in 2008 (Trought et al. 2009). Vines were trained for four consecutive growing seasons 
(2004 to 2008) using five alternative training systems: ●2-cane vertical shoot positioned, 
▼Scott-Henry trained, ▲4-cane vertical shoot positioned, ■ Spur pruned, ♦ Mid-height Sylvoz. 
Within the trial area there were soils with higher (open symbols) lower (closed symbols) water 
holding capacity. A full description of the training systems can be found elsewhere (Smart and 
Robinson 1991). 

6.4.3 Summary 
In general, New Zealand would appear to be in a good position to cope with a small, progressive 
increase in temperature resulting from climate change. An increase in temperature of less than 
1oC can probably be accommodated by changes in current seasonal vineyard practice (e.g. by 
decreasing the leaf area to fruit weight ratio and/or delaying the date of véraison). This might 
need to be accompanied by reducing the degree of fruit exposure to maintain fruit acidity (in 
particular Sauvignon blanc) and preventing excess heating which may reduce colour 
development and/or the concentrations of other secondary metabolites. However, these 
modified management practices are unlikely to cope with a greater increase in temperature. 
Under these circumstances, vineyards will need to be relocated to cooler regions, or alternate 
varieties may need to be considered.   
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7. Summary and conclusions 
The main aim of this research was to develop new knowledge and a set of analytical tools and 
datasets to help wine producers adapt to local spatial and temporal variations in climate in New 
Zealand’s vineyard regions, and thereby to help ensure the future sustainability of the industry. 
The research involved several inter-related phases, starting with an assessment of existing 
climate data for the main vineyard regions of the country, but with a particular focus on the 
Marlborough region as it is New Zealand’s premier wine producing region. As air temperature 
is considered to be the most important environmental factor affecting variations in grapevine 
response, it was the variable selected for the most detailed analysis in this study.  

An analysis of IPCC projections of future climate and recent inter-decadal trends in observed 
air temperature established the context for the rest of the research. Projections of future air 
temperatures for the Marlborough region based on IPCC SRES scenarios suggest that 
temperature increases through to 2050 are likely to remain within the typical inter-annual range, 
while by the end of the century they could lie beyond this range (Philippe et al. 2013). However, 
it is evident from analysis of observed temperature trends in New Zealand vineyard regions 
since 1940 that there are significant regional differences, with Marlborough showing virtually 
no warming trend in mean annual temperatures, but instead a trend of increasing daily 
temperature range and frost occurrence over recent decades. Further investigation identified 
that this trend occurred at a number of sites in or close to vineyard regions, and appears to be 
related to changes in weather patterns affecting the New Zealand region resulting from 
hemispheric scale changes in atmospheric circulation. For example, an increase in the frequency 
of anticyclones over the past few decades is associated with an increase in the Southern Annular 
Mode (representing a major shift in Southern Hemisphere atmospheric circulation), as well as 
an increase in the occurrence of southerly airflow over the region (Sturman and Quénol 2013). 
The analysis of recent temperature trends in New Zealand vineyard regions identified that it is 
overly simplistic to just downscale global scale model predictions of air temperature to the 
regional and local scale without properly considering the effect of the smaller scale processes 
that global models are unable to represent (because of their coarse resolution). The weather and 
climate of New Zealand experiences significant local and regional variations as a result of the 
very complex terrain (Sturman and Tapper 2006). The methodology selected for this research 
was therefore based on the application of meteorological models that have been specifically 
designed to investigate local and regional weather and climate (at horizontal resolutions of a 
few hundred metres or less), and their integration with a new phenological model, thereby 
allowing grapevine response to be related to fine-scale variations in climate in the regions of 
complex terrain where vineyards have been developed.  

The Weather Research and Forecasting (WRF) model was used to simulate meteorological 
variables such as air temperature at 1 km horizontal resolution across both the Marlborough and 
Waipara regions. The model simulations have been validated using meteorological data from 
an enhanced network of nearly 40 weather stations in the Marlborough region, and the model 
found to have a slight cold bias at most sites across the region. In spite of this cold bias, the 
model was found to perform well. WRF model output was used to derive maps of growing 
degree-days and flowering dates for Sauvignon blanc for the grapevine growing season that 
compared well with values calculated from automatic weather stations and obtained from field 
observations within individual vineyards. The integration of the high-resolution 
weather/climate model with the new phenological model provides the basis for improving crop 
models for predicting harvest quantity and quality of a range of grape varieties, as well as for 
developing appropriate adaptation strategies for responding to climate change.  

Retrospective model runs were also conducted using WRF for the growing seasons since 2008-
9, allowing a high spatial resolution inter-seasonal comparison of the growing conditions that 
influence grapevine response and harvest quality. The spatial patterns of temperature and 
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derived variables over Marlborough show the influence of the complex terrain and distance 
from sea on the thermal regime of the vineyard region. The maps also provided a perspective 
on inter-seasonal variability of climate across the region, although such variability has been 
relatively subdued over the last decade in line with national temperature variability. 
A web site has been developed to communicate the results of this research to the wider 
stakeholder community through the provision of data, maps and graphs, as well as a summary 
of possible strategies for wine producers to respond to climate variability and a list of relevant 
publications produced by the research group. The direct transfer of research results to the 
stakeholder community (i.e. the winegrowers) via an operational web site appears to be an 
innovation that has not yet been observed in other parts of the world. Twice-daily model runs 
have been used to provide 24-hour forecasts of hourly wind and air temperature for both the 
Marlborough and Waipara vineyard regions during the 2013-14 and 2014-15 growing seasons, 
while accumulated growing degree-days have been calculated daily and mapped over the two 
regions to provide an indication of the spatial variation in development of the season. 
Comparison with previous growing seasons has also been provided. 

The new knowledge and modelling and analytical tools developed by this research project will 
be developed further and applied to other vineyard regions of New Zealand, as well as in other 
parts of the world through the links that the research group has established with the international 
community. In particular, application of the high-resolution weather and climate model and its 
integration with traditional and new phenological models will continue to be refined and 
improved to allow for a range of grape varieties and the specific conditions found in different 
vineyard regions. During this process, the stakeholder community will be consulted to help 
establish priorities for future work and to help develop appropriate online tools for delivering 
new knowledge and information to wine producers. The same techniques can also be applied 
to a range of different agricultural crops and discussions have been initiated with agencies 
interested in such applications. 
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Appendix A: Temperature maps of the growing seasons from 2008-9 to 2013-14 
 

  
 
Figure A1: Maps of daily average maximum temperature (ºC) over the growing season (1 
October to 30 April) for the Marlborough region using WRF output for a) 2008-9, b) 2009-10, 
c) 2010-2011, d) 2011-2012, e) 2012-2013, f) 2013-14.  
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Figure A2: Maps of daily average minimum temperature (ºC) over the growing season (1 
October to 30 April) for the Marlborough region using WRF output for a) 2008-9, b) 2009-10, 
c) 2010-2011, d) 2011-2012, e) 2012-2013, f) 2013-14. 
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Figure A3: Maps of average growing season temperature (GST – ºC) over the growing season 
(1 October to 30 April) for the Marlborough region using WRF output for a) 2008-9, b) 2009-
10, c) 2010-2011, d) 2011-2012, e) 2012-2013, f) 2013-14. 
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Appendix B: Bioclimatic index maps of the growing seasons from 2008-9 to 2013-14 
 

 
 
Figure B1: Maps of growing degree-day accumulation for the Marlborough vineyard region 
over the growing season based on Weather Research and Forecasting model temperatures for 
a) 2008-9, b) 2009-10, c) 2010-2011, d) 2011-2012, e) 2012-2013, f) 2013-14 derived using the 
Grapevine Flowering Véraison model (period = 29 August to 30 April, threshold = 0ºC). 
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Figure B2: Maps of the Huglin Index for the Marlborough vineyard region over the growing 
season based on Weather Research and Forecasting model temperatures for a) 2008-9, b) 2009-
10, c) 2010-2011, d) 2011-2012, e) 2012-2013, f) 2013-14 (period = 1 October to 31 March, 
threshold = 10ºC). 
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Figure B3: Maps of the Cool Nights index for the Marlborough vineyard region over the 
growing season based on Weather Research and Forecasting model temperatures for a) 2008-
9, b) 2009-10, c) 2010-2011, d) 2011-2012, e) 2012-2013, f) 2013-14 (March average minimum 
temperature). 
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Appendix C: Maps of dates of flowering and veraison for Sauvignon blanc for the 
growing seasons from 2008-9 to 2013-14 
 
 

 
 
Figure C1: Maps of the predicted dates of flowering for Sauvignon blanc for the Marlborough 
region based on WRF temperatures at 1 km resolution over the growing seasons a) 2008-9, b) 
2009-10, c) 2010-2011, d) 2011-2012, e) 2012-2013, f) 2013-14, based on the GFV F* value 
of 1282. 
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Figure C2: Maps of the predicted dates of véraison for Sauvignon blanc for the Marlborough 
region based on WRF temperatures at 1 km resolution over the growing seasons a) 2008-9, b) 
2009-10, c) 2010-2011, d) 2011-2012, e) 2012-2013, f) 2013-14, based on the GFV F* value 
of 2528. 
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Appendix D: Examples of recent frost damage in the Marlborough vineyard region 
 
 

 
Figure D1: Spring frost damage to a Marlborough vineyard. 
 
 

 
Figure D2: Autumn frost damage. 
 


	6.2  Increasing temperature
	6.3  Frosts and frost vulnerability
	6.4  Potential adaption strategies to cope with climate change in New Zealand vineyards
	6.4.1 Long-term management changes

	3.1 Validation of the high-resolution weather and climate model in the Marlborough vineyard region using the enhanced data network
	3.2 High-resolution weather and climate mapping of the Marlborough vineyard region at a range of time scales
	3.3 High-resolution mapping of bioclimatic indices in the Marlborough region based on model output
	6.1 introduction
	6.2 increasing temperature
	6.3 frosts and frost vulnerability
	6.4 Potential adaption strategies to cope with climate change in New Zealand vineyards
	6.4.1 Long-term management changes
	The main aim of this research was to develop new knowledge and a set of analytical tools and datasets to help wine producers adapt to local spatial and temporal variations in climate in New Zealand’s vineyard regions, and thereby to help ensure the fu...
	A web site has been developed to communicate the results of this research to the wider stakeholder community through the provision of data, maps and graphs, as well as a summary of possible strategies for wine producers to respond to climate variabili...
	The new knowledge and modelling and analytical tools developed by this research project will be developed further and applied to other vineyard regions of New Zealand, as well as in other parts of the world through the links that the research group ha...
	Acknowledgements
	The ongoing technical and administrative support of the Department of Geography is also much appreciated, including help with setting up and servicing of the automatic weather station network provided by Justin Harrison, Nick Key and Kathy Hogarth, an...
	References



