

Fisheries New Zealand

Tini a Tangaroa

Trawl survey of hoki and middle-depth species on the Chatham Rise, January 2018 (TAN1801)

New Zealand Fisheries Assessment Report 2018/41

D. W. Stevens R. L. O'Driscoll S. L. Ballara A.C.G Schimel

ISSN 1179-5352 (online) ISBN 978-1-98-857115-7 (online)

November 2018

New Zealand Government

Requests for further copies should be directed to:

Publications Logistics Officer Ministry for Primary Industries PO Box 2526 WELLINGTON 6140

Email: <u>brand@mpi.govt.nz</u> Telephone: 0800 00 83 33 Facsimile: 04-894 0300

This publication is also available on the Ministry for Primary Industries websites at: <u>http://www.mpi.govt.nz/news-and-resources/publications</u> <u>http://fs.fish.govt.nz</u> go to Document library/Research reports

© Crown Copyright – Fisheries New Zealand

EXECUTIVE SUMMARY	1
1. INTRODUCTION	
1.1 Project objectives	3
2. METHODS	
2.1 Survey area and design	
2.2 Vessel and gear specifications	
2.3 Trawling procedure	4
2.4 Acoustic data collection	
2.5 Hydrology	
2.6 Catch and biological sampling	
2.7 Estimation of relative biomass and length frequencies	
2.8 Estimation of numbers at age	
2.9 Acoustic data analysis	3
3. RESULTS	
3.1 2018 survey coverage	6
3.2 Gear performance	
3.3 Hydrology	
3.4 Catch composition	
3.5 Relative biomass estimates	
3.5.1 Core strata (200–800 m)	
3.5.2 Deep strata (800–1300 m)	
3.6 Catch distribution	
3.7 Biological data1	
3.7.1 Species sampled1	
3.7.2 Length frequencies and age distributions	
3.7.3 Reproductive status	
3.8 Acoustic data quality1	
3.8.1 Comparison of acoustics with bottom trawl catches	
3.8.2 Time-series of relative mesopelagic fish abundance 1	
3.9 Hoki condition 1	12
4. CONCLUSIONS 1	12
5. ACKNOWLEDGMENTS 1	13
6. REFERENCES 1	13

EXECUTIVE SUMMARY

Stevens, D.W.; O'Driscoll, R.L.; Ballara, S.L.; Schimel, A.C.G. (2018). Trawl survey of hoki and middle depth species on the Chatham Rise, January 2018 (TAN1801).

New Zealand Fisheries Assessment Report 2018/41. 111 p.

The 25th trawl survey in a time series to estimate the relative biomass of hoki and other middle depth species on the Chatham Rise was carried out from 4 January to 3 February 2018. A random stratified sampling design was used, and 127 bottom trawls were successfully completed. These comprised 83 core (200–800 m) phase 1 biomass tows, 4 core phase 2 tows, and 40 deep (800–1300 m) tows.

Estimated relative biomass of all hoki in core strata was 122 097 t (CV 16.2%), an increase of 7% from January 2016. This increase was largely driven by the biomass estimates for 1+ year old hoki (2016 year class) of 30 499 t and 2+ hoki (2015 year-class) of 51 346 t. The biomass estimate for 2+ hoki was the third highest estimate in the time series. The relative biomass of recruited hoki (ages 3+ years and older) of 40 252 t declined by 26% from that in 2016 but recruited hoki were also observed in deep (800–1300 m) strata in 2018. The relative biomass of hake in core strata increased by 28% to 1660 t (CV 34.3%) between 2016 and 2018. The relative biomass of ling was 8758 t (CV 11.5%), 14% lower than that in January 2016, but the time-series for ling shows no overall trend.

The age frequency distribution for hoki was dominated by 1+ and 2+ year old fish. The age frequency distribution for hake was broad, with most aged between 3-9 years. The age distribution for ling was also broad, with most aged between 2-20 years.

In 2018 the survey again covered 800–1300 m depths around the entire Rise. The deep strata provide relative biomass indices for a range of deepwater sharks and other species associated with orange roughy and oreo fisheries.

Acoustic data were collected during the trawl survey. As in previous surveys, there was a weak positive correlation (rho = 0.29) between acoustic density from bottom marks and trawl catch rates. The acoustic index of mesopelagic fish abundance in 2018 decreased in all four sub-areas, and was 40% lower than that in 2016, and the lowest since 2011. Hoki liver condition was also lower than in 2016, and the lowest in the time-series of condition indices that goes back to 2004. There was a strong positive correlation (rho = 0.71) between hoki liver condition and indices of mesopelagic fish scaled by hoki abundance ("food per fish").

1. INTRODUCTION

In January 2018, the 25th in a time series of random trawl surveys on the Chatham Rise was completed. This and all previous surveys in the series were carried out from RV *Tangaroa* and form the most comprehensive time series of relative species abundance at water depths of 200 to 800 m in New Zealand's 200-mile Exclusive Economic Zone. Previous surveys in this time series were documented by Horn (1994a, 1994b), Schofield & Horn (1994), Schofield & Livingston (1995, 1996, 1997), Bagley & Hurst (1998), Bagley & Livingston (2000), Stevens et al. (2001, 2002, 2008, 2009a, 2009b, 2011, 2012, 2013, 2014, 2015, 2017), Stevens & Livingston (2003), Livingston et al. (2004), Livingston & Stevens (2005), and Stevens & O'Driscoll (2006, 2007). Trends in relative biomass, and the spatial and depth distributions of 142 species or species groups, were reviewed for the surveys from 1992–2010 by O'Driscoll et al. (2011b).

The main aim of the Chatham Rise surveys is to provide relative biomass estimates of adult and juvenile hoki. Hoki is New Zealand's largest finfish fishery, with an annual total allowable commercial catch (TACC) of 150 000 t from 1 October 2015. Although managed as a single fishery, hoki is assessed as two stocks, western and eastern. The hypothesis is that juveniles from both stocks mix on the Chatham Rise and recruit to their respective stocks as they approach sexual maturity. The Chatham Rise is also thought to be the principal residence area for the hoki that spawn in Cook Strait and off the east coast South Island in winter (eastern stock). Annual commercial catches of hoki on the Chatham Rise peaked at about 75 000 t in 1997–98 and 1998–99, decreased to a low of 30 700 t in 2004–05, and increased again from 2008–09 to 2011–12 (Ballara & O'Driscoll 2014). The catch from the Chatham Rise in 2016–17 was 39 900 t, making it the second largest fishery in the EEZ (behind the west coast South Island), and contributing about 28% of the total annual New Zealand hoki catch.

The hoki fishery is dominated by young fish and so it is strongly influenced by recruitment. To manage the fishery and minimise potential risks, it is important to have some predictive ability concerning recruitment into the fishery. Extensive sampling throughout the EEZ has shown that the Chatham Rise is the main nursery ground for hoki aged 2 to 4 years. Abundance estimation of 2+ hoki on the Chatham Rise provides the best index of recruitment to the adult stocks. The continuation of the time series of trawl surveys on the Chatham Rise is therefore a high priority to provide information required to update the assessment of hoki.

Other middle depth species are also monitored by this survey time series (O'Driscoll et al. 2011b). These include important commercial species such as hake and ling, as well as a wide range of non-commercial fish and invertebrate species. For most of these species, the trawl survey is the only fisheries-independent estimate of abundance on the Chatham Rise, and the survey time-series fulfils an important "ecosystem monitoring" role (e.g., Tuck et al. 2009), as well as providing inputs into single-species stock assessments.

In January 2010, the survey was extended to sample deeper strata (800 to 1300 m) in the north and east of the Chatham Rise. In January 2016, the survey duration was increased by 6 days to also include deeper strata to the south and west of the Chatham Rise (Stevens et al. 2017). The 2018 survey again covered 800–1300 m depths around the whole Chatham Rise, providing fishery independent abundance indices for a range of common deepwater bycatch species in the orange roughy and oreo fisheries.

Acoustic data have been recorded during trawls and while steaming between stations on all trawl surveys on the Chatham Rise since 1995, except in 2004. Data from previous surveys were analysed to describe mark types (Cordue et al. 1998, Bull 2000, O'Driscoll 2001, Livingston et al. 2004, Stevens & O'Driscoll 2006, 2007, Stevens et al. 2008, 2009a, 2009b, 2011, 2012, 2013, 2014), to provide estimates of the ratio of acoustic vulnerability to trawl catchability for hoki and other species (O'Driscoll 2002, 2003), and to estimate abundance of mesopelagic fish (McClatchie & Dunford 2003, McClatchie et al. 2005, O'Driscoll et al. 2009, 2011a, Stevens et al. 2009b, 2011, 2012, 2013, 2014, 2015, 2017). Acoustic data also provide qualitative information on the amount of fish that are not available to the bottom trawl, either through being off the bottom, or over areas of foul ground.

1.1 Project objectives

The trawl survey was carried out under contract to the Ministry for Primary Industries (project MID2017/02). The specific objectives for the project were as follows:

- 1. To continue the time series of relative abundance indices of recruited hoki (eastern stock) and other middle depth and deepwater species on the Chatham Rise in January 2018 using trawl surveys and to determine year class strengths of juvenile hoki (1, 2 and 3 year olds), with target CV of 20 % for the number of two year olds.
- 2. To collect data required to support determination of the population age, size structure, and reproductive biology of hoki, hake, and ling on the Chatham Rise.
- 3. To collect acoustic and related data during the trawl survey.
- 4. To sample deeper strata for deepwater species using a random trawl survey design.
- 5. To collect and preserve specimens of unidentified organisms taken during the trawl survey, and identify them later ashore.

2. METHODS

2.1 Survey area and design

As in previous years, the survey followed a two-phase random design (after Francis 1984). The main survey area of 200–800 m depth (Figure 1) was divided into 23 strata. Nineteen of these strata are the same as those used in 2003–11 (Livingston et al. 2004, Livingston & Stevens 2005, Stevens & O'Driscoll 2006, 2007, Stevens et al. 2008, 2009a, 2009b, 2011, 2012). In 2012, stratum 7 was divided into strata 7A and 7B at 175° 30'E to more precisely assess the biomass of hake which appeared to be spawning northeast of Mernoo Bank (in Stratum 7B). In 2013, the survey duration was reduced from 27 to 25 days, removing the contingency for bad weather and reducing the available time for phase 2 stations. To increase the time available for phase 2 stations in 2014, strata 10A and 10B were re-combined into a single stratum 10 and stratum 11A, 11B, 11C, 11D into a single stratum 11. These strata are in the 400–600 m depth range on the northeast Chatham Rise (Figure 1) and were originally split to reduce hake CVs. However, few hake were caught in these strata since 2000 and 18 phase 1 tows (3 in each sub-strata) assigned to this area is no longer justified.

Station allocation for phase 1 was determined from simulations based on catch rates from all previous Chatham Rise trawl surveys (1992–2016), using the 'allocate' procedure of Bull et al. (2000) as modified by Francis (2006). This procedure estimates the optimal number of stations to be allocated in each stratum to achieve the Ministry for Primary Industries target CV of 20% for 2+ hoki, and CVs of 15% for total hoki and 20% for hake. The initial allocation of 83 core stations in phase 1 is given in Table 1. Phase 2 stations for core strata were allocated at sea, to improve the CV for 2+ hoki and total hoki biomass.

As in 2016, the 2018 survey area included 11 deep strata from 800–1300 m around the entire Chatham Rise (Figure 1). The station allocation for the deep strata was determined based on catch rates of eight bycatch species (basketwork eel, four-rayed rattail, longnose velvet dogfish, Baxter's dogfish, ribaldo, bigscaled brown slickhead, shovelnose dogfish, and smallscaled brown slickhead) in the 2010–16 surveys. Orange roughy, black oreo, and smooth oreo are no longer considered target species. The 'allocate' programme (Francis 2006) was used to estimate the optimal number of stations to be allocated in each of strata 21–30 to achieve a target CV of 25% for these eight bycatch species. A minimum of three stations per stratum was used. This gave a total of 43 phase 1 deep stations (Table 1). There was no allowance for phase 2 trawling in deep strata.

2.2 Vessel and gear specifications

Tangaroa is a purpose-built, research stern trawler of 70 m overall length, a beam of 14 m, 3000 kW (4000 hp) of power, and a gross tonnage of 2282 t.

The bottom trawl was the same as that used on previous surveys of middle depth species by *Tangaroa*. The net is an eight-seam hoki bottom trawl with 100 m sweeps, 50 m bridles, 12 m backstrops, 58.8 m groundrope, 45 m headline, and 60 mm codend mesh (see Hurst & Bagley (1994) for net plan and rigging details). The trawl doors were Super Vee type with an area of 6.1 m². Measurements of doorspread (from a Scanmar system) and headline height (from a Furuno net monitor) were recorded every five minutes during each tow and average values calculated.

2.3 Trawling procedure

Trawling followed the standardised procedures described by Hurst et al. (1992). Station positions were selected randomly before the voyage using the Random Stations Generation Program (Version 1.6) developed by NIWA. To maximise the amount of time spent trawling in the deep strata (800–1300 m) at night, the time spent searching for suitable core (200–800 m) tows at night was reduced by using the nearest known successful tow position to the random station. Care was taken to ensure that the centre positions of survey tows were at least 3 n. miles apart. For deep strata, there was often insufficient bathymetric data and few known tow positions, so these tows followed the standard survey methodology described by Hurst et al. (1992). If a random station position was found to be on foul ground, a search was made for suitable ground within 3 n. miles of the station position. If no suitable ground could be found, the station was abandoned, and another random position was substituted. Core biomass tows were carried out during daylight hours (as defined by Hurst et al. (1992)), with all trawling between 0503 h and 1853 h NZST.

At each station the trawl was towed for 3 n. miles at a speed over the ground of 3.5 knots. If foul ground was encountered, or the tow hauled early due to reducing daylight, the tow was included as valid only if at least 2 n. miles was covered. If time ran short at the end of the day and it was not possible to reach the last station, the vessel headed towards the next station and the trawl gear was shot in time to ensure completion of the tow by sunset, if at least 50% of the steaming distance to the next station was covered.

Towing speed and gear configuration were maintained as constant as possible during the survey, following the guidelines given by Hurst et al. (1992). The average speed over the ground was calculated from readings taken every five minutes during the tow.

2.4 Acoustic data collection

Acoustic data were collected during trawling and while steaming between trawl stations (both day and night) with the *Tangaroa* multi-frequency (18, 38, 70, 120, and 200 kHz) Simrad EK60 echosounders with hull-mounted transducers. All frequencies are regularly calibrated following standard procedures (Demer et al. 2015), with the most recent calibration being used for any data processing. In the present case, the latest calibration of *Tangaroa* echosounders was on 27 August 2016 in East Bay, Marlborough Sounds at the start of the Campbell southern blue whiting acoustic survey (O'Driscoll et al. in press).

2.5 Hydrology

Temperature and salinity data were collected using a calibrated Seabird SM-37 Microcat CTD datalogger mounted on the headline of the trawl. Data were collected at 5 s intervals throughout the trawl, providing vertical profiles. Surface values were read off the vertical profile at the beginning of each tow at a depth of about 5 m, which corresponded to the depth of the hull temperature sensor used in previous surveys. Bottom values were from about 7.0 m above the seabed (i.e., the height of the trawl headline).

2.6 Catch and biological sampling

At each station all items in the catch were sorted into species and weighed on Marel motion-compensating electronic scales accurate to about 0.1 kg. Where possible, fish, squid, and crustaceans were identified to species and other benthic fauna to species or family. Unidentified organisms were collected and frozen at sea and returned to NIWA for later identification.

An approximately random sample of up to 200 individuals of each commercial, and some common noncommercial, species from every successful tow was measured and the sex determined. More detailed biological data were also collected on a subset of species and included fish weight, gonad stage, and gonad weight. Otoliths were taken from hake, hoki, ling, black oreo, smooth oreo, and orange roughy for age determination. Additional data on liver condition were also collected from a subsample of 20 hoki per tow by recording gutted and liver weights.

2.7 Estimation of relative biomass and length frequencies

Doorspread biomass was estimated by the swept area method of Francis (1981, 1989) using the formulae in Vignaux (1994) as implemented in NIWA custom software SurvCalc (Francis 2009). The catchability coefficient (an estimate of the proportion of fish in the path of the net which are caught) is the product of vulnerability, vertical availability, and areal availability. These factors were set at 1 for the analysis.

Scaled length frequencies were calculated for the major species with SurvCalc, using length-weight data from this survey.

2.8 Estimation of numbers at age

Hoki, hake, and ling otoliths were prepared and aged using validated ageing methods (hoki, Horn & Sullivan (1996) as modified by Cordue et al. (2000); hake, Horn (1997); ling, Horn (1993)).

Subsamples of 659 hoki otoliths and 600 ling otoliths were selected from those collected during the trawl survey. Subsamples were obtained by randomly selecting otoliths from 1 cm length bins covering the bulk of the catch and then systematically selecting additional otoliths to ensure that the tails of the length distributions were represented. The numbers aged approximated the sample size necessary to produce mean weighted CVs of less than 20% for hoki and 30% for ling across all age classes. All hake otoliths collected were prepared.

Numbers-at-age were calculated from observed length frequencies and age-length keys using customised NIWA catch-at-age software (Bull & Dunn 2002). For hoki, this software also applied the "consistency scoring" method of Francis (2001), which uses otolith zone radii measurements to improve the consistency of age estimation.

2.9 Acoustic data analysis

Acoustic data analysis followed the methods applied to recent Chatham Rise trawl surveys (e.g., Stevens et al. 2017), generalised by O'Driscoll et al. (2011a). This report does not include discussion of mark classification or descriptive statistics on the frequency of occurrence of different mark types, as these were based on subjective classification, and were found not to vary much between surveys (e.g., Stevens et al. 2014).

Quantitative analysis was based on 38 kHz acoustic data from daytime trawl and night steam recordings. The 38 kHz data were used as this frequency was the only one available (other than uncalibrated 12 kHz data) for surveys before 2008 that used the old CREST acoustic system (Coombs et al. 2003). Analysis was carried

out using the custom analysis software ESP3 (Ladroit 2017). ESP3 includes an algorithm to identify 'bad pings' in each acoustic recording. "Bad pings" were defined as pings for which backscatter data were significantly different from surrounding pings, usually due to bubble aeration or noise spikes. Only acoustic data files where the proportion of bad pings was less than 30% of all pings in the file were considered suitable for quantitative analysis.

Estimates of the mean acoustic backscatter per km² from bottom-referenced marks were calculated for each recording, based on integration heights of 10 m, 50 m, and 100 m above the bottom. Total acoustic backscatter was also integrated throughout the water column in 50 m depth bins. Acoustic density estimates (m² per km²) from bottom-referenced marks were compared with trawl catch rates (kg per km²). No attempt was made to scale acoustic estimates by target strength, correct for differences in catchability, or carry out species decomposition (O'Driscoll 2002, 2003).

O'Driscoll et al. (2009, 2011a) developed a time series of relative abundance estimates for mesopelagic fish on the Chatham Rise based on that component of the acoustic backscatter that migrates into the upper 200 m of the water column at night (nyctoepipelagic backscatter). Because some of the mesopelagic fish migrate very close to the surface at night, they move into the surface 'dead zone' (shallower than 14 m) where they are not detectable by the vessel's downward-looking hull-mounted transducer. Consequently, there is a substantial negative bias in night-time acoustic estimates. To correct for this bias, O'Driscoll et al. (2009) used night estimates of demersal backscatter (which remains deeper than 200 m at night) to correct daytime estimates of total backscatter.

The mesopelagic time series was updated to include data from 2018. Day estimates of total backscatter were calculated using total mean area backscattering coefficients estimated from each trawl recording. Night estimates of demersal backscatter were based on data recorded while steaming between 2000 h and 0500 h NZST. Acoustic data were stratified into four broad geographic sub-areas (O'Driscoll et al. 2011a). Stratum boundaries were:

- Northwest north of $43^{\circ} 30'$ S and west of $177^{\circ} 00$ E;
- Northeast north of 43° 30' S and east of 177° 00' E;
- Southwest south of $43^{\circ} 30'$ S and west of $177^{\circ} 00'$ E;
- Southeast south of $43^{\circ} 30'$ S and east of $177^{\circ} 00'$ E.

The amount of mesopelagic backscatter at each day trawl station was estimated by multiplying the total backscatter observed at the station by the estimated proportion of night-time backscatter in the same sub-area that was observed in the upper 200 m corrected for the estimated proportion in the surface dead zone:

$$sa(meso)_i = p(meso)_s * sa(all)_i$$

where $sa(meso)_i$ is the estimated mesopelagic backscatter at station *i*, $sa(all)_i$ is the observed total backscatter at station *i*, and $p(meso)_s$ is the estimated proportion of mesopelagic backscatter in the stratum *s* where station *i* is found. $p(meso)_s$ was calculated from the observed proportion of night-time backscatter observed in the upper 200 m in stratum *s*, $p(200)_s$, and the estimated proportion of the total backscatter in the surface dead zone, p_{sz} . p_{sz} was estimated as 0.2 by O'Driscoll et al (2009) and was assumed to be the same for all years and strata:

$$p(meso)_s = p_{sz} + p(200)_s * (1 - p_{sz})$$

3. RESULTS

3.1 2018 survey coverage

The trawl survey was successfully completed. The deepwater trawling objective meant that trawling was carried out both day (core and some deep tows) and night (deep tows only). About 54 hours were lost due to bad weather. Upon reaching the Chatham Rise survey area early on 5 January, *Tangaroa* was caught

up in the cyclonic low that hit the east coast of New Zealand with gale north-easterlies followed by gale south-westerlies and heavy swells (4–6 m). This meant that only one tow was carried out in the first two days of the voyage. Weather conditions for the remainder of the survey were generally very good, with wind speeds less than 25 knots, until 1 February when very strong winds from another approaching low (former cyclone Fehi) forced trawling to stop 8 hours earlier than planned. Another 10 hours were lost on 23 January going to Lyttleton to pick up a replacement charger for the door sensors, which failed on 18 January.

A total of 127 successful trawl survey tows were completed, comprising 83 phase 1 tows and 4 phase 2 tows in core 200–800 m strata, and 40 deep tows (Tables 1 and 2, Figure 2, Appendix 1). Three further tows were considered unsuitable for estimating abundance: station 61 in deep stratum 25 was rejected because of a high headline height suggesting unsatisfactory gear performance; tow 102 in deep stratum 23 came fast; and tow 122 in stratum 6 came off the bottom. All planned phase 1 tows were carried out in core strata. There were three fewer deep tows than planned, because the rejected tows in strata 23 and 25 were not substituted, and bad weather on 1 February prevented the vessel from reaching the final tow position in stratum 30. Station details for all tows are given in Appendix 1.

Core station density ranged from 1 per 288 km² in stratum 17 (200–400 m, Veryan Bank) to 1 per 3841 km² in stratum 16 (400–600 m, southwest Chatham Rise). Deepwater station density ranged from 1 per 416 km² in stratum 21a (800–1000 m, NE Chatham Rise) to 1 per 5480 km² in stratum 30 (1000–1300 m, southwest Chatham Rise). Mean station density was 1 per 1701 km² (see Table 1).

3.2 Gear performance

Gear parameters are summarised in Table 3. A headline height value was obtained for all 127 successful tows, but doorspread readings were not available for 21 tows. Mean headline heights by 200 m depth intervals were 7.0–7.6 m, and averaged 7.3 m, and although slightly higher than those in previous surveys, were within the optimal range (Hurst et al. 1992) (Table 3). Mean doorspread measurements by 200 m depth intervals were 114.0–125.6 m, and averaged 121.0 m, and were consistent with previous surveys.

3.3 Hydrology

Temperatures were $15.0-19.3^{\circ}$ C (mean 17.1° C) and bottom temperatures were $3.3-11.7^{\circ}$ C (mean 7.5° C) (Figure 3). Surface temperatures in 2018 were very warm compared to previous surveys (Figure 4 top panel), but the warm surface layer typically only extended to 50 m depth. Bottom temperatures in 2018 were in the range of those observed in previous surveys (Figure 4 lower panel).

3.4 Catch composition

The total catch from all 127 valid biomass stations was 158.9 t, of which 67.7 t (42.6%) was hoki, 22.0 t (13.8%) was black oreo, 7.7 t (4.8%) was smooth oreo, 3.3 t (2.1%) was ling, 1.6 t (1.0%) was hake, and 0.6 t (0.4%) was orange roughy (Table 4).

Of the 314 species or species groups identified from valid biomass tows, 148 were teleosts, 34 were elasmobranchs, 1 was an agnathan, 25 were crustaceans, and 15 were cephalopods. The remainder consisted of assorted benthic and pelagic invertebrates. A full list of species caught in valid biomass tows, and the number of stations at which they occurred, is given in Appendix 2. This year all *Apristurus* catsharks (APR) were retained and most were identified to species onshore by NIWA and Te Papa staff.

Fifty-four invertebrate taxa were later identified (Appendix 3).

3.5 Relative biomass estimates

3.5.1 Core strata (200-800 m)

Relative biomass in core strata was estimated for 47 species (Table 4). The CVs achieved for hoki, hake, and ling from core strata were 16.0%, 34.3%, and 11.5% respectively. The CV for 2+ hoki (2015 yearclass) was 19.1%, below the target CV of 20%. High CVs (over 30%) generally occurred when species were not well sampled by the gear. For example, alfonsino, barracouta, frostfish, southern Ray's bream, and slender mackerel are not strictly demersal and exhibit strong schooling behaviour and consequently catch rates of these are highly variable. Others, such as bluenose, hapuku, rough skate, and tarakihi, have high CVs as they are mainly distributed outside the core survey depth range (O'Driscoll et al. 2011b).

The combined relative biomass for the top 31 species in the core strata that are tracked annually (Livingston et al. 2002, see Table 4) was slightly higher than in 2016, lower than in 2013, like that in 2011, and above average for the time series (Figure 5, top panel). As in previous years, hoki was the most abundant species caught (Table 4, Figure 5, lower panel). The relative proportion of hoki in 2018 was about the same as 2016, like 2009 and 2014, and higher than that in 2010–13. The next most abundant QMS species in core strata were alfonsino, silver warehou, black oreo, spiny dogfish, lookdown dory, ling, dark ghost shark, sea perch, spiky oreo, giant stargazer, smooth oreo, and white warehou, each with an estimated relative biomass of over 2000 t (Table 4). The most abundant non-QMS species were javelinfish, Bollons' rattail, shovelnose dogfish, and oblique banded rattail (Table 4).

Estimated relative biomass of hoki in the core strata in 2018 was 122 097 t, 7% higher than the hoki biomass in January 2016 (Table 5, Figures 6a, 7a, 7b). This was largely driven by a high biomass estimate for 2+ hoki (2015-year class) of 51 346 t, the third highest in the time series, and a high biomass estimate for 1+ hoki of 30 499 t, the fourth highest in the time series (Table 6). The relative biomass of recruited hoki (ages 3+ years and older) was 40 252 t, 26% lower than in the 2016 survey and the lowest since 2008. However, the biomass estimate of recruited hoki from all strata was only 7% lower than in 2016, due to a large catch of adult hoki (2181 kg) in stratum 27. About 21% of the biomass of recruited hoki in 2018 was estimated to come from stratum 27, although the CV for this estimate was high (98.3%).

The relative biomass of hake in core strata was 1660 t, 28% higher than 2016, one of the higher estimates in recent years, but still low compared to the early 1990s (see Table 5, Figures 6a, 7a, 7b). This was mainly driven by a large catch of 1007 kg in stratum 7b, the largest in the time series.

The relative biomass of ling was 8758 t, 14% lower than in January 2016, although the time series for ling shows no overall trend (Figures 6a, 7a, 7b).

The relative biomass estimates for giant stargazer, lookdown dory, sea perch, and spiny dogfish were higher than 2016 estimates, silver warehou were about the same, and dark ghost shark, pale ghost shark, and white warehou were lower than the 2016 estimate (Figures 6a, 7a, 7b).

3.5.2 Deep strata (800–1300 m)

Relative biomass and CVs were estimated for 27 species (Table 4). The relative biomass of orange roughy in all strata in 2018 was 1302 t, compared to 6916 t in 2016 (Figures 6b, 7c). Although the survey was not optimised for orange roughy in 2018, there were no large catches so the precision was reasonable with a CV of 20.8%.

As a result of a 25 t mixed catch (station 128) in stratum 27, which included 18.1 t of black oreo, 88% of the total relative biomass of black oreo (105 837 t) was estimated to occur in the deep strata (Table 4, Figures 6b, 7c). This is compared to 32% of the total biomass in deep strata in the 2016 survey. The estimated relative biomass of smooth oreo in deep strata was 33 514 t but precision was poor with a CV of 69.3%. It was also influenced by the same 25 t catch, which included 4.4 t of smooth oreo.

Deepwater sharks were relatively abundant in deep strata, with 33%, 60%, and 84% of the total survey biomass of shovelnose dogfish, longnose velvet dogfish, and Baxter's dogfish occurring in deep strata (Figures 6b, 7c). In 2018, bigscaled and smallscaled brown slickhead were restricted to deep strata, and basketwork eel, and four-rayed rattail were largely restricted to deeper strata. Spiky oreo were mainly caught in core strata (Figures 6b, 7c).

The deep strata contained 9.1% of the total survey hoki biomass, 8.4% of total survey hake biomass, and 0.3% of total survey ling biomass. This indicates that the core survey strata are likely to have sampled most of the ling available to the trawl survey method on the Chatham Rise, but missed some hoki and hake (Table 4). The deep biomass estimate for hoki (12 196 t) was the highest in the time series, due to a single catch of 2.2 t (part of the 25 t mixed catch in stratum 27) and precision was poor with a CV of 86.7%.

3.6 Catch distribution

Spatial distribution maps of catches (Figures 8–9) were generally like those from previous surveys.

Hoki

In the 2018 survey, hoki were caught in 83 of the 87 core biomass stations. They were not captured in 4 shallow tows: (less than 250 m) on the Reserve Bank (stratum 19); and east of the Chatham Islands (stratum 9). The highest catch rates were at 200–400 m depths on Veryan Bank (stratum 17) and Mernoo Bank (stratum 18), and east of Chatham Islands at 400–600 m depths (stratum 11) (Table 7a, Figure 8). The highest individual catch of hoki in 2018 was 21 572 kg on Veryan Bank in stratum 17, and was mostly 1+ hoki (Figure 8, Appendix 1). Other high individual hoki catches were two 5.1 t catches around Mernoo Bank in stratum 18, and a 3.6 t catch east of Chatham Islands in stratum 11. For the first time in the time series (Figure 7b), a reasonable catch (2.2 t) of large hoki were caught in one of the deep strata (stratum 27). The year class of hoki aged 1+ (2016 year-class) was largely restricted to 200–400 m western strata around Veryan, Mernoo, and Reserve Banks (strata 17, 18, 20) (Figure 8). The strong year class of hoki aged 2+ (2015 year-class) were found over much of the Rise at 200–600 m depths but were more abundant around Mernoo Bank (stratum 18) and east of Chatham Islands (stratum 11) (Figure 8). Recruited hoki (3+ and older) were widespread but the highest catch rates were on southwest Chatham Rise in stratum 27 (850 m depth) and east of Chatham Islands in stratum 11 (Figure 8).

Hake

Catch rates of hake were dominated by a large catch (1007 kg) of mature hake in Stratum 7b, northeast of Mernoo Bank. This was the highest catch in the Chatham Rise time series, surpassing a catch of 839 kg from the same strata in 2009. A further 93 kg were caught in an adjacent station in the same strata. Other hake catches were consistently low throughout much of the survey area. (Figure 9).

Ling

As in previous years, catches of ling were distributed throughout most strata in the core survey area (Figure 7a, 9). The highest catch rates were at 400–600 metres around Mernoo Bank (strata 7A,7B, 15, 16).

Other species

As with previous surveys, lookdown dory, sea perch and spiny dogfish were widely distributed throughout the survey area at 200–600 m depths. The largest catch rates for sea perch were taken at 200–400 m on Mernoo Bank (stratum 18) and Reserve Bank (strata 19, 20), the largest catch rate of lookdown dory was taken in stratum 11, and the largest catch rates of spiny dogfish were taken around the Mernoo Bank, Reserve Bank, and west of the Chatham Islands (Figure 9). Dark ghost shark was mainly caught at 200–400 m depths on the western Rise and was particularly abundant on Veryan and Reserve Banks; while pale ghost shark was mostly caught in deeper water at 400–800 m depth, with higher catch rates to the south. Giant stargazer was mainly caught in shallower strata, with the largest catch taken east of Mernoo Bank in stratum 18. Silver warehou and white warehou were patchily distributed at depths of 200–600 m, with the largest catches in the west (Figure 9). Javelinfish and Bollons' rattail were widely distributed throughout the survey area. The largest catch rate of javelinfish was taken east of the Chatham Islands in stratum 11

while the largest catch rates of Bollons' rattail were taken around Mernoo and Veryan Banks (Figure 7a). Ribaldo were widespread at 400–1000 m with the largest catch rates mainly to the north (Figure 9).

Orange roughy was widespread on the north and east Rise at 800–1300 m depths (Figure 9). In contrast to many previous surveys there were no large catches, the largest was 100 kg taken on the northeast Rise in 1044 m in stratum 24 (Table 7b, Figure 9). As with previous surveys, black oreo was mostly caught on the southwest Rise at 600–1000 m depths. Catch rates of black oreo and smooth oreo were dominated by a mixed 25 t catch in stratum 27 at 850 m, which included 18.1 t of black oreo, 4.4 t of smooth oreo, and 2.2 t of large hoki. A further 1.8 t of smooth oreo was captured on the southeast Rise in stratum 28 at 1160 m. No black oreo or smooth oreo were caught in stratum 30 (1000–1300 m) (Table 7a, Figure 9). Spiky oreo were widespread and abundant on the north Rise at 500–850 m, with the largest catch rates taken in strata 1, 2b and 12 (Table 7a, Figure 7). Shovelnose dogfish, longnose velvet dogfish, basketwork eel, bigscaled brown slickhead and four-rayed rattail were also more abundant on the north Rise. Baxter's dogfish and smallscaled brown slickhead were more abundant on the south Rise (Table 7a, Figures 7, 9).

3.7 Biological data

3.7.1 Species sampled

The number of species and the number of samples for which length and length-weight data were collected are given in Table 8.

3.7.2 Length frequencies and age distributions

Length-weight relationships used in the SurvCalc program to scale length frequencies and calculate relative biomass and catch rates are given in Table 9.

Hoki

Length and age frequency distributions were dominated by hoki aged 1+ (less than 48 cm) and 2+ (48–59 cm) (Figures 10 and 11). There were relatively few fish longer than 70 cm (Figure 13) or older than 6 years (Figure 14). Female hoki were estimated to be slightly more abundant than males (ratio of 1.05 female: 1 male).

Hake

Length frequency and calculated number at age distributions (Figures 12 and 13) were relatively broad, with most male fish aged 3–15 years and female fish 3–14 years. Female hake were estimated to be more abundant than males (1.23 female: 1 male).

Ling

Length frequency and calculated number-at-age distributions (Figures 14 and 15) indicated a wide range of ages, with most fish aged 2–20. There is evidence of a period of good recruitment from 1999–2006 (Figure 15). Male ling were estimated to be more abundant than females (1 female: 1.17 male).

Other species

Length frequency distributions for key core and deepwater species are shown in Figures 16. Clear modes are apparent in the size distribution of silver warehou and white warehou, which may correspond to individual cohorts.

Length frequency distributions for giant stargazer, lookdown dory, dark ghost shark, pale ghost shark, and several shark species (spiny dogfish, Baxter's dogfish, longnose velvet dogfish, and shovelnose dogfish) indicate that females grow larger than males (Figure 16).

The deep strata contained a high proportion of large shovelnose dogfish, longnose velvet dogfish, and Baxter's dogfish (Figure 16b).

Length frequency distributions were similar for males and females of sea perch (*Helicolenus barathri*), silver warehou, white warehou, orange roughy, black oreo, smooth oreo, and spiky oreo. The length frequency distribution for orange roughy was broad, with a mode at about 30–37 cm, but included fish as small as 7 cm (Figure 16).

The catches of spiny dogfish, bigscaled brown slickhead, and basketwork eels were dominated by females (greater than 1.5 female: 1 male) while the catch of ribaldo was dominated by males (1.59 male: 1 female) (Figure 16).

3.7.3 Reproductive status

Gonad stages of hake, hoki, ling, and several other species are summarised in Table 10. Almost all hoki were recorded as either resting or immature. About 29% of male ling were maturing or ripe, with few females showing signs of spawning. About 68% of male hake were ripe, running ripe, partially spent, or spent, but most females were immature or resting (39%) or maturing (56%) (Table 10). Most other species for which reproductive state was recorded did not appear to be reproductively active, except spiny dogfish and some deepwater sharks (Table 10).

3.8 Acoustic data quality

Acoustic data were recorded continuously throughout the survey. Over 96 GB of data were collected during trawling and steaming between stations. Weather and sea conditions during the survey were generally very good, meaning acoustic data quality was high overall. Only 7 out of the 130 trawl transects (5.4% of trawls) exceeded the threshold of 30% bad pings and so were not suitable for quantitative analysis. Similarly, only 3 out of the 47 night-time steam transects (6.4% of night steams) were not suitable for analysis.

Expanding symbol plots of the distribution of total acoustic backscatter from daytime trawls and night transects in the overall survey area (200–1300 m) are shown in Figure 17. As noted by O'Driscoll et al. (2011), there is a consistent spatial pattern in total backscatter on the Chatham Rise, with higher backscatter in the west.

3.8.1 Comparison of acoustic backscatter with bottom trawl catches

Acoustic data from 85 core trawl files were integrated and compared with trawl catch rates (Table 11). Data from another two recordings made during core daytime tows were not included in the analysis because the acoustic data were too noisy. Average acoustic backscatter values from the entire water column in 2018 was 30% lower than that in 2016, despite an increase in average trawl catch rates (Table 11). Average acoustic backscatter in the bottom 10 m and 50 m were also lower than those in 2016, but were within the range of previous surveys in the time-series (Table 11).

There was a positive correlation (Spearman's rank correlation, rho = 0.29, p < 0.01) between acoustic backscatter in the bottom 100 m during the day and trawl catch rates (Figure 18). In previous Chatham Rise surveys from 2001–16, rank correlations between trawl catch rates and acoustic density estimates ranged from 0.15 (in 2006) to 0.50 (in 2013). The correlation between acoustic backscatter and trawl catch rates (Figure 18) is not perfect (rho = 1) because the daytime bottom-referenced layers on the Chatham Rise may also contain a high proportion of mesopelagic species, which contribute to the acoustic backscatter, but which are not sampled by the bottom trawl (O'Driscoll 2003, O'Driscoll et al. 2009), and conversely some fish caught by the trawl may not be measured acoustically (e.g., close to the bottom in the acoustic deadzone). This, combined with the diverse composition of demersal species present, means that it is unlikely that acoustics will provide an alternative biomass estimate for hoki on the Chatham Rise.

3.8.2 Time-series of relative mesopelagic fish abundance

In 2018, most acoustic backscatter was between 250 and 500 m depth during the day, and migrated into the surface 200 m at night (Figure 19). The daytime vertical distribution was like the pattern observed in all previous years except 2011 (O'Driscoll et al. 2011a, Stevens et al. 2013, 2014, 2015, 2017). In 2011, there was a different daytime distribution of backscatter, with a concentration of backscatter between 150 and 350 m, no obvious peak at 350–400 m, and smaller peaks centred at around 550 and 750 m (Stevens et al. 2012). In 2018, a higher proportion of backscatter remained at depth during the night than in some previous years, with an obvious night-time peak at around 500 m (Figure 19).

The vertically migrating component of acoustic backscatter is assumed to be dominated by mesopelagic fish (see McClatchie & Dunford, 2003 for rationale and caveats). In 2018, between 44 and 75% of the total backscatter in each of the four sub-areas was in the upper 200 m at night and was estimated to be from vertically migrating mesopelagic fish (Table 12). The proportion of backscatter attributed to mesopelagic fish in 2018 was lower than that in 2016 in all sub-areas except the southeast, but within the range of other surveys in the time-series (Table 12).

Day estimates of total acoustic backscatter over the Chatham Rise were consistently higher than night estimates (Figure 20) because of the movement of fish into the surface deadzone (shallower than 14 m) at night (O'Driscoll et al. 2009). In 2018, night estimates were closer to day estimates than most previous years, possibly because a lower proportion of backscatter was migrating into the near-surface waters at night (see Figure 19). The only other exception to this general pattern was in 2011, when night estimates were higher than day estimates (Figure 20). However, there was relatively little good quality acoustic data available from the southeast Chatham Rise in 2011 due to poor weather conditions (Stevens et al. 2012).

Total daytime backscatter in 2018 was 27% lower than that observed in 2016. Backscatter within 50 m of the bottom during the day decreased from 2001 to 2011, increased from 2012 to 2016, but decreased in 2018 (Figure 20). Backscatter close to the bottom at night has been relatively low throughout the time-series, but showed an increasing trend over the past nine years (Figure 20).

Acoustic indices of mesopelagic fish abundance are summarised in Table 13 and plotted in Figure 21 for the entire Chatham Rise and for the four sub-areas. The overall mesopelagic estimate for the Chatham Rise in 2018 decreased by 40% from 2016 and was the lowest since 2011. The mesopelagic index decreased in all four sub-areas, with the highest percentage decrease (58%) in the southwest, which was typically the most variable sub-area over the time-series (Table 13, Figure 21).

3.9 Hoki condition

Liver condition (defined as liver weight divided by gutted weight) for all hoki on the Chatham Rise decreased by 24% from 2014 to 2016, and was the lowest in the time-series of condition indices that goes back to 2004 (Figure 22. This decrease in overall condition occurred across all length classes, but was particularly apparent for 60–80 cm hoki (Figure 22). Stevens et al. (2014) suggested that hoki condition may be related to both food availability and hoki density, and estimated an index of "food per fish" from the ratio of the acoustic estimate of mesopelagic fish abundance divided by the trawl estimate of hoki abundance. The significant positive correlation between liver condition and the food per fish index reported previously was strengthened with the addition of the 2018 data (Figure 23, Spearman's correlation coefficient, rho = 0.71, n = 12, p < 0.01).

4. CONCLUSIONS

The 2018 survey successfully extended the January Chatham Rise time series to 25 points (annual from 1992–2014, then biennial), and provided abundance indices for hoki, hake, ling, and a range of associated middle-depth species.

The estimated relative biomass of hoki in core strata was 7% higher than that in 2016, due to relatively high biomass estimates of 2+ hoki (2015 year-class) and of 1+ hoki (2016 year-class). The estimated biomass of 3++ (recruited) hoki declined by 26% from that in 2016, but 3++ hoki were also observed in deep (800–1300 m) strata in 2018.

The relative biomass of hake in core strata was 28% higher than in 2016, but was still at low levels compared to the early 1990s. The relative biomass of ling in core strata was 14% lower than in 2016, but the time series for ling shows no overall trend.

In 2018 the survey area covered 800–1300 m depths around the entire Rise for only the second time. The deep strata provide relative biomass estimates for a range of deepwater species associated with orange roughy and oreo fisheries. A high proportion of the estimated biomass of deepwater sharks (shovelnose dogfish, longnose velvet dogfish, and Baxter's dogfish) occurred in deep strata, and bigscaled brown slickheads, smallscaled brown slickheads, basketwork eels, and four-rayed rattails were largely restricted to deeper strata.

The acoustic index of mesopelagic fish abundance in 2018 decreased in all four sub-areas, and was 40% lower than that in 2016, and the lowest since 2011. Hoki liver condition was also lower than in 2016, and the lowest in the time-series of condition indices that goes back to 2004. Mesopelagic fish species, which contribute to the acoustic backscatter, are not sampled by the bottom trawl and conversely some fish caught by the trawl may not be measured acoustically (e.g., close to the bottom in the acoustic deadzone). This, combined with the diverse composition of demersal species present, means that it is unlikely that acoustics will provide an alternative biomass estimate for hoki on the Chatham Rise.

5. ACKNOWLEDGMENTS

We thank the scientific staff and the master, officers, and crew of *Tangaroa* who contributed to the success of this voyage. We are grateful to the two Sir Peter Blake students Victoria Carrington and Toby Dickson, and Monique Ladds from Victoria University of Wellington, for their assistance with biological sampling at sea. Thanks to the scientific staff involved with the otolith preparation and reading of the hake, hoki, and ling otoliths, Peter Horn for the calculation of catch at age data, and NIWA National Invertebrate Collection staff for identification of invertebrates. A draft of this report was reviewed by Peter McMillan. This work was carried out by NIWA under contract to the Ministry for Primary Industries (Project MID2017/02).

6. REFERENCES

- Bagley, N.W.; Hurst, R.J. (1998). Trawl survey of hoki and middle depth species on the Chatham Rise, January 1998 (TAN9801). *NIWA Technical Report 44*. 54 p.
- Bagley, N.W.; Livingston, M.E. (2000). Trawl survey of hoki and middle depth species on the Chatham Rise, January 1999 (TAN9901). *NIWA Technical Report 81*. 52 p.
- Ballara, S.L.; O'Driscoll, R.L. (2014). Catches, size, and age structure of the 2012–13 hoki fishery, and a summary of input data used for the 2014 stock assessment. *New Zealand Fisheries Assessment Report* 2014/41. 123 p.
- Bull, B. (2000). An acoustic study of the vertical distribution of hoki on the Chatham Rise. *New Zealand Fisheries Assessment Report 2000/5*. 59 p.
- Bull, B.; Bagley, N.W.; Hurst, R.J. (2000). Proposed survey design for the Southern Plateau trawl survey of hoki, hake and ling in November-December 2000. Final Research Report to the Ministry of Fisheries for Project MDT1999/01 Objective 1. 31 p. (Unpublished report held by Fisheries New Zealand, Wellington.)
- Bull, B.; Dunn, A. (2002). Catch-at-age user manual v1.06.2002/09/12. NIWA Internal Report 114. 23 p. (Unpublished report held in NIWA library, Wellington.)

- Coombs, R.F.; Macaulay, G.J.; Knol, W.; Porritt, G. (2003). Configurations and calibrations of 38 kHz fishery acoustic survey systems, 1991–2000. *New Zealand Fisheries Assessment Report 2003/49*. 24 p.
- Cordue, P.L.; Ballara, S.L.; Horn, P.L. (2000). Hoki ageing: recommendation of which data to routinely record for hoki otoliths. Final Research Report to the Ministry of Fisheries for Project MOF1999/01 (Hoki ageing). 24 p. (Unpublished report held by Fisheries New Zealand, Wellington.)
- Cordue, P.L.; Macaulay, G.J.; Ballara, S.L. (1998). The potential of acoustics for estimating juvenile hoki abundance by age on the Chatham Rise. Final Research Report for Ministry of Fisheries Research Project HOK9702 Objective 3. 35 p. (Unpublished report held by Fisheries New Zealand, Wellington.)
- Demer, D.A.; Berger, L.; Bernasconi, M.; Bethke, E.; Boswell, K.; Chu, D.; Domokos, R.; et al. (2015). Calibration of acoustic instruments. *ICES Cooperative Research Report No. 326*. 133 p.
- Francis, R.I.C.C. (1981). Stratified random trawl surveys of deep-water demersal fish stocks around New Zealand. *Fisheries Research Division Occasional Publication 32*. 28 p.
- Francis, R.I.C.C. (1984). An adaptive strategy for stratified random trawl surveys. *New Zealand Journal of Marine and Freshwater Research 18:* 59–71.
- Francis, R.I.C.C. (1989). A standard approach to biomass estimation from bottom trawl surveys. New Zealand Fisheries Assessment Research Document 89/3. 3 p. (Unpublished report held in NIWA library, Wellington.)
- Francis, R.I.C.C. (2001). Improving the consistency of hoki age estimation. *New Zealand Fisheries* Assessment Report 2001/12. 18 p.
- Francis, R.I.C.C. (2006). Optimum allocation of stations to strata in trawl surveys. *New Zealand Fisheries Assessment Report 2006/23*. 50 p.
- Francis, R.I.C.C. (2009). SurvCalc User Manual. 39 p. (Unpublished report held at NIWA, Wellington.)
- Horn, P.L. (1993). Growth, age structure, and productivity of ling, *Genypterus blacodes* (Ophidiidae), in New Zealand waters. *New Zealand Journal of Marine and Freshwater Research* 27: 385–397.
- Horn, P.L. (1994a). Trawl survey of hoki and middle depth species on the Chatham Rise, December 1991-January 1992 (TAN9106). *New Zealand Fisheries Data Report No. 43*. 38 p.
- Horn, P.L. (1994b). Trawl survey of hoki and middle depth species on the Chatham Rise, December 1992-January 1993 (TAN9212). *New Zealand Fisheries Data Report No. 44*. 43 p.
- Horn, P.L. (1997). An ageing methodology, growth parameters and estimates of mortality for hake (*Merluccius australis*) from around the South Island, New Zealand. *Marine and Freshwater Research* 48: 201–209.
- Horn, P.L.; Sullivan, K.J. (1996). Validated aging methodology using otoliths, and growth parameters for hoki (*Macruronus novaezelandiae*) in New Zealand waters. *New Zealand Journal of Marine and Freshwater Research 30*: 161–174.
- Hurst, R.J.; Bagley, N.W. (1994). Trawl survey of middle depth and inshore bottom species off Southland, February-March 1993 (TAN9301). *New Zealand Fisheries Data Report No. 52.* 58 p.
- Hurst, R.J.; Bagley, N.; Chatterton, T.; Hanchet, S.; Schofield, K.; Vignaux, M. (1992). Standardisation of hoki/middle depth time series trawl surveys. MAF Fisheries Greta Point Internal Report No. 194. 89 p. (Unpublished report held in NIWA library, Wellington.)
- Ladroit, Y. (2017). ESP3: an open-source software for fisheries acoustic data processing. https://bitbucket.org/echoanalysis/esp3
- Livingston, M.E.; Bull, B.; Stevens, D.W.; Bagley, N.W. (2002). A review of hoki and middle depth trawl surveys of the Chatham Rise, January 1992–2001. *NIWA Technical Report 113*. 146 p.
- Livingston, M.E.; Stevens, D.W. (2005). Trawl survey of hoki and middle depth species on the Chatham Rise, January 2004 (TAN0401). *New Zealand Fisheries Assessment Report 2005/21*. 62 p.
- Livingston, M.E.; Stevens, D.W.; O'Driscoll, R.L.; Francis, R.I.C.C. (2004). Trawl survey of hoki and middle depth species on the Chatham Rise, January 2003 (TAN0301). New Zealand Fisheries Assessment Report 2004/16. 71 p.
- McClatchie, S.; Dunford, A. (2003). Estimated biomass of vertically migrating mesopelagic fish off New Zealand. *Deep-Sea Research Part I 50*: 1263–1281.
- McClatchie, S.; Pinkerton, M.; Livingston, M.E. (2005). Relating the distribution of a semi-demersal fish, *Macruronus novaezelandiae*, to their pelagic food supply. *Deep-Sea Research Part I* 52: 1489–1501.

- O'Driscoll, R.L. (2001). Analysis of acoustic data collected on the Chatham Rise trawl survey, January 2001 (TAN0101). Final Research Report for Ministry of Fisheries Research Project HOK2000/02 Objective 3. 26 p. (Unpublished report held by Fisheries New Zealand, Wellington.)
- O'Driscoll, R.L. (2002). Estimates of acoustic:trawl vulnerability ratios from the Chatham Rise and Sub-Antarctic. Final Research Report for Ministry of Fisheries Research Projects HOK 2001/02 Objective 3 and MDT2001/01 Objective 4. 46 p. (Unpublished report held by Fisheries New Zealand, Wellington.)
- O'Driscoll, R.L. (2003). Determining species composition in mixed species marks: an example from the New Zealand hoki (*Macruronus novaezelandiae*) fishery. *ICES Journal of Marine Science* 60: 609–616.
- O'Driscoll, R.L.; Gauthier, S.; Devine, J. (2009). Acoustic surveys of mesopelagic fish: as clear as day and night? *ICES Journal of Marine Science* 66: 1310–1317.
- O'Driscoll, R.L.; Hurst, R.J.; Dunn, M.R.; Gauthier, S.; Ballara, S.L. (2011a). Trends in relative biomass using time series of acoustic backscatter data from trawl surveys. *New Zealand Aquatic Environment and Biodiversity Report 2011/76.* 99 p.
- O'Driscoll, R.L.; Large, K.; Marriott, P. (in press). Acoustic estimates of southern blue whiting from the Campbell Island Rise, August–September 2016 (TAN1610). *New Zealand Fisheries Assessment Report 2018/xx* 62 p.
- O'Driscoll, R.L.; MacGibbon, D.; Fu, D.; Lyon, W.; Stevens, D.W. (2011b). A review of hoki and middle depth trawl surveys of the Chatham Rise, January 1992–2010. *New Zealand Fisheries Assessment Report 2011/47*. 72 p. + CD.
- Schofield, K.A.; Horn, P.L. (1994). Trawl survey of hoki and middle depth species on the Chatham Rise, January 1994 (TAN9401). *New Zealand Fisheries Data Report No. 53*. 54 p.
- Schofield, K.A.; Livingston, M.E. (1995). Trawl survey of hoki and middle depth species on the Chatham Rise, January 1995 (TAN9501). *New Zealand Fisheries Data Report No. 59*. 53 p.
- Schofield, K.A.; Livingston, M.E. (1996). Trawl survey of hoki and middle depth species on the Chatham Rise, January 1996 (TAN9601). *New Zealand Fisheries Data Report No.* 71. 50 p.
- Schofield, K.A.; Livingston, M.E. (1997). Trawl survey of hoki and middle depth species on the Chatham Rise, January 1997 (TAN9701). *NIWA Technical Report* 6. 51 p.
- Stevens, D.W.; Livingston, M.E. (2003). Trawl survey of hoki and middle depth species on the Chatham Rise, January 2002 (TAN0201). *New Zealand Fisheries Assessment Report 2003/19*. 57 p.
- Stevens, D.W.; Livingston, M.E.; Bagley, N.W. (2001). Trawl survey of hoki and middle depth species on the Chatham Rise, January 2000 (TAN0001). *NIWA Technical Report 104*. 55 p.
- Stevens, D.W.; Livingston, M.E.; Bagley, N.W. (2002). Trawl survey of hoki and middle depth species on the Chatham Rise, January 2001 (TAN0101). *NIWA Technical Report 116*. 61 p.
- Stevens, D.W.; O'Driscoll, R.L. (2006). Trawl survey of hoki and middle depth species on the Chatham Rise, January 2005 (TAN0501). *New Zealand Fisheries Assessment Report 2006/13*. 73 p.
- Stevens, D.W.; O'Driscoll, R.L. (2007). Trawl survey of hoki and middle depth species on the Chatham Rise, January 2006 (TAN0601). *New Zealand Fisheries Assessment Report 2007/5*. 73 p.
- Stevens, D.W.; O'Driscoll, R.L.; Ballara, S.L.; Ladroit, Y. (2017). Trawl survey of hoki and middledepth species on the Chatham Rise, January 2016 (TAN1601). New Zealand Fisheries Assessment Report 2017/08. 131 p.
- Stevens, D.W.; O'Driscoll, R.L.; Dunn, M.R.; Ballara, S.L.; Horn, P.L. (2012). Trawl survey of hoki and middle depth species on the Chatham Rise, January 2011 (TAN1101). *New Zealand Fisheries Assessment Report 2012/10.* 98 p.
- Stevens, D.W.; O'Driscoll, R.L.; Dunn, M.R.; Ballara, S.L.; Horn, P.L. (2013). Trawl survey of hoki and middle depth species on the Chatham Rise, January 2012 (TAN1201). *New Zealand Fisheries Assessment Report 2013/34*. 103 p.
- Stevens, D.W.; O'Driscoll, R.L.; Dunn, M.R.; MacGibbon, D.; Horn, P.L.; Gauthier, S. (2011). Trawl survey of hoki and middle depth species on the Chatham Rise, January 2010 (TAN1001). *New Zealand Fisheries Assessment Report 2011/10*. 112 p.
- Stevens, D.W.; O'Driscoll, R.L.; Gauthier, S (2008). Trawl survey of hoki and middle depth species on the Chatham Rise, January 2007 (TAN0701). New Zealand Fisheries Assessment Report 2008/52. 81 p.
- Stevens, D.W.; O'Driscoll, R.L.; Horn, P.L. (2009a). Trawl survey of hoki and middle depth species on the Chatham Rise, January 2008 (TAN0801). *New Zealand Fisheries Assessment Report 2009/18*. 86 p.

- Stevens, D.W.; O'Driscoll, R.L.; Horn, P.L. (2009b). Trawl survey of hoki and middle depth species on the Chatham Rise, January 2009 (TAN0901). New Zealand Fisheries Assessment Report 2009/55. 91 p.
- Stevens, D.W.; O'Driscoll, R.L.; Ladroit, Y.; Ballara, S.L.; MacGibbon, D.J.; Horn, P.L. (2015). Trawl survey of hoki and middle depth species on the Chatham Rise, January 2014 (TAN1401). *New Zealand Fisheries Assessment Report 2015/19*. 119 p.
- Stevens, D.W.; O'Driscoll, R.L.; Oeffner, J.; Ballara, S.L.; Horn, P.L. (2014). Trawl survey of hoki and middle depth species on the Chatham Rise, January 2013 (TAN1301). *New Zealand Fisheries Assessment Report 2014/02*. 110 p.
- Tuck, I.; Cole, R.; Devine, J. (2009). Ecosystem indicators for New Zealand fisheries. *New Zealand Aquatic Environment and Biodiversity Report* 42. 188 p.
- Vignaux, M. (1994). Documentation of Trawl survey Analysis Program. MAF Fisheries Greta Point Internal Report No. 225. 44 p. (Unpublished report held in NIWA library, Wellington.)

Stratum number	Depth range (m)	Location	Area (km ²)	Phase 1 allocation	Phase 1 stations	Phase 2 stations	Total stations	Station density (1: km ²)
1	600-800	NW Chatham Rise	2 439	3	3		3	1:813
2A	600-800	NW Chatham Rise	3 253	3	3		3	1:1 084
2B	600-800	NE Chatham Rise	8 503	4	4		4	1:2 126
3	200-400	Matheson Bank	3 499	3	3		3	1:1 166
4	600-800	SE Chatham Rise	11 315	3	3		3	1:3 772
5	200-400	SE Chatham Rise	4 078	3	3		3	1:1 359
6	600-800	SW Chatham Rise	8 266	3	3		3	1:2 755
7A	400–600	NW Chatham Rise	4 364	3	3		3	1:1 455
7B	400–600	NW Chatham Rise	869	3	3		3	1:290
8A	400–600	NW Chatham Rise	3 286	3	3		3	1:1 095
8B	400-600	NW Chatham Rise	5 722	3	3		3	1:1 907
9	200-400	NE Chatham Rise	5 136	3	3		3	1:1 712
10	400-600	NE Chatham Rise	6 321	4	4		4	1:1 580
11	400-600	NE Chatham Rise	11 748	6	6	2	8	1:1 469
12	400-600	SE Chatham Rise	6 578	3	3		3	1:2 193
13	400-600	SE Chatham Rise	6 681	3	3		3	1:2 227
14	400-600	SW Chatham Rise	5 928	3	3		3	1:1 976
15	400-600	SW Chatham Rise	5 842	3	3		3	1:1 947
16	400-600	SW Chatham Rise	11 522	3	3		3	1:3 841
17	200-400	Veryan Bank	865	3	3		3	1:288
18	200-400	Mernoo Bank	4 687	4	4	2	6	1:781
19 20	200-400	Reserve Bank	9 012	7	7		7	1:1 287
20	200-400	Reserve Bank	9 584	7	7		7	1:1 369
Core	200-800		139 492	83	83	4	87	1:1 603
21A	800-1000	NE Chatham Rise	1 249	3	3		3	1:416
21B	800-1000	NE Chatham Rise	5 819	5	5		5	1:1 164
22	800-1000	NW Chatham Rise	7 357	7	7		7	1:1 051
23	1000-1300	NW Chatham Rise	7 014	5	4		4	1:1 754
24	1000-1300	NE Chatham Rise	5 672	3	3		3	1:1 891
25	800-1000	SE Chatham Rise	5 596	5	4		4	1:1 399
26	800-1000	SW Chatham Rise	5 158	3	3		3	1:1 719
27	800-1000	SW Chatham Rise	7 185	3	3		3	1:2 395
28	1000-1300	SE Chatham Rise	9 494	3	3		3	1:3 165
29	1000-1300	SW Chatham Rise	10 965	3	3		3	1:3 655
30	1000-1300	SW Chatham Rise	10 960	3	2		2	1:5 480
Deep	800-1300		76 469	43	40	0	40	1:1 912
Total	200-1300		215 967	126	123	4	127	1:1 701

Table 1: The number of completed valid biomass tows (200–1300 m) by stratum during the 2018 Chatham
Rise trawl survey.

Table 2: Survey dates and number of valid core (200–800 m depth) biomass tows in surveys of the Chatham Rise, January 1992–2014, 2016, and 2018. †, years where the deep component of the survey was carried out. The TAN1401 survey included an additional two days for ratcatcher bottom tows.

Trip code	Start date	End date	No. of valid core biomass tows
TAN9106	28 Dec 1991	1 Feb 1992	184
TAN9212	30 Dec 1992	6 Feb 1993	194
TAN9401	2 Jan 1994	31 Jan 1994	165
TAN9501	4 Jan 1995	27 Jan 1995	122
TAN9601	27 Dec 1995	14 Jan 1996	89
TAN9701	2 Jan 1997	24 Jan 1997	103
TAN9801	3 Jan 1998	21 Jan 1998	91
TAN9901	3 Jan 1999	26 Jan 1999	100
TAN0001	27 Dec 1999	22 Jan 2000	128
TAN0101	28 Dec 2000	25 Jan 2001	119
TAN0201	5 Jan 2002	25 Jan 2002	107
TAN0301	29 Dec 2002	21 Jan 2003	115
TAN0401	27 Dec 2003	23 Jan 2004	110
TAN0501	27 Dec 2004	23 Jan 2005	106
TAN0601	27 Dec 2005	23 Jan 2006	96
TAN0701	27 Dec 2006	23 Jan 2007	101
TAN0801	27 Dec 2007	23 Jan 2008	101
TAN0901	27 Dec 2008	23 Jan 2009	108
TAN1001†	2 Jan 2010	28 Jan 2010	91
TAN1101†	2 Jan 2011	28 Jan 2011	90
TAN1201†	2 Jan 2012	28 Jan 2012	100
TAN1301†	2 Jan 2013	26 Jan 2013	91
TAN1401†	2 Jan 2014	28 Jan 2014	87
TAN1601†	3 Jan 2016	2 Feb 2016	93
TAN1801†	4 Jan 2018	3 Feb 2018	87

Table 3: Tow and gear parameters by depth range for valid biomass tows (TAN1801). Values shown are sample size (n), and for each parameter the mean, standard deviation (s.d.), and range.

	п	Mean	s.d.	Range
Core tow parameters				-
Tow length (n. miles)	87	2.8	0.35	2.1-3.2
Tow speed (knots)	87	3.5	0.05	3.3-3.7
All tow parameters				
Tow length (n. miles)	127	2.8	0.31	2.1-3.3
Tow speed (knots)	127	3.5	0.04	3.3-3.7
Gear parameters				
Headline height (m)				
200–400 m	30	7.4	0.35	6.5-7.9
400–600 m	41	7.0	0.44	6.0-7.9
600–800 m	16	7.2	0.30	6.6-7.7
800–1000 m	25	7.4	0.27	6.9-7.8
1000–1300 m	15	7.6	0.31	7.0 - 8.1
Core stations 200-800 m	87	7.2	0.42	6.0 - 7.9
All stations 200-1300 m	127	7.3	0.41	6.0-8.1
Doorspread (m)				
200–400 m	23	114.0	7.91	100.0-127.1
400–600 m	34	123.1	7.52	111.6-138.3
600–800 m	16	122.3	6.94	112.1-136.0
800–1000 m	22	121.3	6.16	109.8-134.4
1000–1300 m	11	125.6	7.09	111.2-133.5
Core stations 200–800 m	73	120.2	8.45	100.0-138.3
All stations 200–1300 m	106	121.0	8.01	100.0-138.3

Table 4: Catch (kg) and total relative biomass (t) estimates (also by sex) with coefficient of variation (CV, %) for QMS species, other commercial species, and key non-commercial species for valid biomass tows in the 2018 survey core strata (200–800 m); and catch and biomass estimates for deep strata (800–1300 m). Total biomass includes unsexed fish. (–, no data.). Arranged in descending relative biomass estimates for the core strata. –, no data. * indicates 30 key species defined by Livingston et al. (2002), the other was orange perch (OPE).

		Cat	tch (kg)				Biomass (t)
Common name	Code	Core	Deep	Core male	Core female	Core total	Deep total
OME subside							
QMS species Hoki*	HOK	64 669	3 069	54 274 (16.7)	67 572 (15.5)	122 097 (16.0)	12 196 (86.7)
Alfonsino*	BYS	8 026	- 3 009	13 946 (92.1)	07 572 (15.5) 11 914 (89.7)	25 889 (90.9)	12 190 (80.7)
Silver warehou*	SWA	5 523	- 1	6 923 (45.8)	5 944 (43.1)	12 953 (44.2)	4 (100)
Black oreo*	BOE	2 242	19 722	6 001 (53.1)	6 349 (61.6)	12 359 (57.4)	93 478 (92.4)
Spiny dogfish*	SPD	4 286	19722	1 747 (13.9)	8 428 (10.8)	10 175 (10.0)	4 (100)
Lookdown dory*	LDO	4 280 3 251	12	3 750 (48.4)	5 757 (19.9)	9 535 (27.2)	17 (45.3)
Ling*	LIN	3 303	21	3 927 (16.1)	4 830 (11.0)	8 758 (11.5)	28 (53.0)
Dark ghost shark*	GSH	3 508	- 21	2 253 (17.4)	3 321 (18.1)	5 580 (17.5)	28 (55.0)
Sea perch*	SPE	2 052	7	2 472 (11.7)	2 255 (11.6)	4 749 (11.3)	8 (72.8)
Spiky oreo*	SOR	1 394	, 196	2 219 (28.8)	1 903 (27.1)	4 137 (27.7)	312 (33.4)
Giant stargazer*	GIZ	1 530	5	806 (37.9)	2 230 (23.5)	3 035 (26.0)	8 (100)
Smooth oreo*	SSO	534	7135	1 272 (60.1)	1 359 (60.8)	2 634 (60.4)	33 514 (69.3)
White warehou*	WWA	901	-	1 110 (39.3)	969 (33.6)	2 102 (36.0)	
Hake*	HAK	1 512	96	446 (38.0)	1 206 (33.9)	1 660 (34.3)	153 (41.8)
Pale ghost shark*	GSP	462	124	702 (18.1)	842 (16.8)	1 544 (15.0)	413 (41.4)
Smooth skate	SSK	402 565	- 124	463 (37.0)	1 066 (26.3)	1 529 (22.4)	413 (41.4)
Arrow squid*	NOS	589	- 1	568 (49.9)	623 (43.1)	1 209 (46.2)	2 (100)
Southern Ray's bream	SRB	462	-	607 (40.8)	582 (38.3)	1 209 (40.2) 1 202 (39.1)	2 (100)
Tarakihi*	NMP	286	-	689 (89.2)	321 (46.5)	1 010 (70.6)	-
Red cod*	RCO	832	-	381 (40.7)	306 (21.1)	687 (29.9)	-
School shark*	SCH	852 195	-	429 (32.9)	36 (56.2)	465 (30.8)	-
Barracouta*	BAR	130	-	106 (81.5)	271 (67.5)	377 (61.9)	-
Hapuku*	HAP	130	-	161 (42.4)	136 (48.9)	297 (33.0)	-
Frostfish	FRO	80	-	187 (99.4)	108 (91.1)	297 (33.0) 296 (96.2)	-
Ribaldo*	RIB	101	50	72 (29.5)	203 (29.2)	275 (23.2)	79 (20.7)
Southern blue whiting	SBW	83	- 50	118 (54.3)	203 (29.2) 79 (59.4)	197 (52.6)	79 (20.7)
Bluenose	SD W BNS	83 60		44 (70.1)	108 (60.9)	152 (61.2)	-
Deepsea cardinalfish	EPT	43	- 4	44 (70.1) 48 (44.6)	. ,	89 (36.8)	6 (100)
Slender mackerel*	JMM	43 38	4	48 (44.0) 19 (76.4)	28 (32.4) 57 (76.8)	76 (76.1)	0(100)
Orange roughy	ORH	28	- 609	13 (73.7)	26 (53.6)	40 (59.6)	1 262 (21.3)
Jack mackerel	JMD	28 16	- 009	, ,	10 (100)	40 (39.0) 31 (100)	1 202 (21.3)
Lemon sole*	LSO	10	-	21 (100) 13 (47.2)	10 (100)	25 (28.3)	-
Redbait*	RBT	6	-	8 (64.6)	6 (73.5)	25 (28.5) 15 (60.2)	-
	SCI	6	-	7 (20.6)	5 (30.5)	13 (00.2)	-
Scampi Rough skate	RSK	8	-	2 (100)	8 (100)	10 (83.0)	-
Ray's bream	RBM	8 4	-	. ,	3 (100)	9 (100)	-
2		4	-	4 (100)		· · · · ·	-
Rubyfish	RBY	2	-	-	5 (75.0)	5 (75.0)	-
Commerical non-QMS	S species						
Shovelnose dogfish*	SND	1 458	986	1 460 (16.3)	2 107 (26.5)	3 567 (20.5)	1 759 (25.7)

Table 4 (continued)

		Cat	tch (kg)				Biomass (t)
Common name	Code	Core	Deep	Core male	Core female	Core total	Deep total
Non-commercial specie	es						
Javelin fish*	JAV	2 481	391	795 (15.2)	6 227 (25.1)	7 173 (22.6)	762 (38.1)
Bollons' rattail*	CBO	2 381	16	3 460 (19.1)	2 835 (15.2)	6 490 (15.1)	25 (70.9)
Oblique banded rattail*	CAS	836	-	89 (27.3)	1 164 (14.0)	1 269 (14.0)	-
Longnose velvet	CYP	461	640	515 (58.7)	239 (39.5)	760 (51.3)	1 164 (20.9)
dogfish							
Oliver's rattail*	COL	248	6	365 (44.9)	363 (38.9)	743 (40.9)	9 (95.8)
Baxters lantern dogfish	ETB	61	380	230 (46.7)	80 (46.6)	309 (40.1)	1 638 (52.3)
Johnson's cod	HJO	22	402	19 (42.4)	18 (50.8)	38 (44.6)	1 558 (19.9)
Basketwork eel	BEE	4	473	12 (100)	9 (100)	21 (52.2)	1 513 (13.8)
Four-rayed rattail	CSU	11	518	3 (49.8)	10 (61.0)	18 (41.4)	1 156 (22.4)
Bigscaled brown	SBI	-	823	-	-	-	2 762 (13.3)
slickhead							
Smallscaled brown	SSM	-	414	-	-	-	1 975 (20.7)
slickhead							
Total (above)		114 816	36 102				
Grand total (all species)		119 731	39 202				

Table 5: Estimated core 200–800 m relative biomass (t) with coefficient of variation (%) for hoki, hake, and ling sampled by annual trawl surveys of the Chatham Rise, January 1992–2014, 2016, and 2018. No. Stns, number of valid stations; CV, coefficient of variation. See also Figure 6.

				Hoki		Hake		Ling
Year	Survey	No. stns	Biomass	CV	Biomass	CV	Biomass	CV
1992	TAN9106	184	120 190	7.7	4 180	14.9	8 930	5.8
1993	TAN9212	194	185 570	10.3	2 950	17.2	9 360	7.9
1994	TAN9401	165	145 633	9.8	3 353	9.6	10 129	6.5
1995	TAN9501	122	120 441	7.6	3 303	22.7	7 363	7.9
1996	TAN9601	89	152 813	9.8	2 457	13.3	8 4 2 4	8.2
1997	TAN9701	103	157 974	8.4	2 811	16.7	8 543	9.8
1998	TAN9801	91	86 678	10.9	2 873	18.4	7 313	8.3
1999	TAN9901	100	109 336	11.6	2 302	11.8	10 309	16.1
2000	TAN0001	128	72 151	12.3	2 152	9.2	8 348	7.8
2001	TAN0101	119	60 330	9.7	1 589	12.7	9 352	7.5
2002	TAN0201	107	74 351	11.4	1 567	15.3	9 442	7.8
2003	TAN0301	115	52 531	11.6	888	15.5	7 261	9.9
2004	TAN0401	110	52 687	12.6	1 547	17.1	8 248	7.0
2005	TAN0501	106	84 594	11.5	1 048	18.0	8 929	9.4
2006	TAN0601	96	99 208	10.6	1 384	19.3	9 301	7.4
2007	TAN0701	101	70 479	8.4	1 824	12.2	7 907	7.2
2008	TAN0801	101	76 859	11.4	1 257	12.9	7 504	6.7
2009	TAN0901	108	144 088	10.6	2 419	20.7	10 615	11.5
2010	TAN1001	91	97 503	14.6	1 701	25.1	8 846	10.0
2011	TAN1101	90	93 904	14.0	1 099	14.9	7 027	13.8
2012	TAN1201	100	87 505	9.8	1 292	14.7	8 098	7.4
2013	TAN1301	91	124 112	15.3	1 793	15.3	8 714	10.1
2014	TAN1401	87	101 944	9.8	1 377	15.2	7 489	7.2
2016	TAN1601	93	114 514	14.2	1 299	18.5	10 201	7.2
2018	TAN1801	87	122 097	16.0	1 660	34.3	8 758	11.5

Table 6: Relative biomass estimates (t in thousands) for hoki, 200–800 m depths, Chatham Rise trawl surveys January 1992–2014, 2016, and 2018 (CV, coefficient of variation; 3++, all hoki aged 3 years and older; (see Appendix 4 for length ranges used to define age classes.). See also Figure 6.

			1+ hoki			2+ hoki	3 -	++ hoki	To	tal hoki
Survey	1+ year class	t	% CV	2+ year class	t	% CV	t	% CV	t	% CV
1992	1990	3.0	(27.8)	1989	23.9	(13.1)	94.7	(7.8)	121.6	(7.7)
1993	1991	33.0	(33.4)	1990	8.8	(18.2)	144.5	(9.0)	186.2	(10.2)
1994	1992	14.7	(20.2)	1991	44.8	(18.4)	87.2	(9.4)	146.7	(9.8)
1995	1993	6.6	(12.9)	1992	42.7	(11.4)	71.8	(8.3)	121.2	(7.4)
1996	1994	27.6	(24.4)	1993	15.0	(13.3)	110.3	(10.3)	152.8	(9.7)
1997	1995	3.2	(40.3)	1994	61.4	(12.0)	93.4	(8.2)	158.0	(8.4)
1998	1996	4.4	(33.0)	1995	15.6	(19.1)	66.7	(10.7)	86.7	(10.9)
1999	1997	25.5	(30.6)	1996	13.8	(19.0)	70.1	(10.2)	109.3	(11.6)
2000	1998	14.4	(32.4)	1997	28.2	(20.7)	29.1	(9.2)	71.7	(12.4)
2001	1999	0.4	(72.9)	1998	26.3	(17.1)	33.7	(8.8)	60.3	(9.7)
2002	2000	22.5	(26.1)	1999	1.2	(21.2)	50.6	(12.7)	74.4	(11.4)
2003	2001	4.9	(46.0)	2000	27.2	(15.1)	20.4	(9.3)	52.5	(11.6)
2004	2002	14.4	(32.5)	2001	5.5	(20.4)	32.8	(12.9)	52.7	(12.6)
2005	2003	17.5	(23.4)	2002	45.8	(16.3)	21.2	(11.4)	84.6	(11.5)
2006	2004	25.9	(21.5)	2003	33.6	(18.8)	39.7	(10.3)	99.2	(10.6)
2007	2005	9.1	(27.5)	2004	32.8	(13.1)	28.8	(8.9)	70.7	(8.5)
2008	2006	15.6	(31.6)	2005	23.8	(15.6)	37.5	(7.8)	76.9	(11.4)
2009	2007	25.2	(28.8)	2006	65.2	(17.2)	53.7	(7.8)	144.1	(10.6)
2010	2008	19.3	(30.7)	2007	28.6	(15.4)	49.6	(16.3)	97.5	(14.6)
2011	2009	26.9	(36.9)	2008	26.3	(14.1)	40.7	(7.8)	93.9	(14.0)
2012	2010	2.6	(30.1)	2009	29.1	(16.6)	55.9	(8.0)	87.5	(9.8)
2013	2011	50.9	(24.5)	2010	1.0	(43.6)	72.1	(12.8)	124.1	(15.3)
2014	2012	5.7	(36.6)	2011	43.3	(14.2)	53.0	(10.9)	101.9	(9.8)
2016	2014	47.6	(27.6)	2013	12.9	(18.6)	54.0	(12.8)	114.5	(14.2)
2018	2016	30.5	(38.8)	2015	51.3	(19.1)	40.3	(14.8)	122.1	(16.0)

Table 7a: Estimated relative biomass (t) and coefficient of variation (% CV) for hoki, hake, ling, other key core strata species, and key deep strata species by stratum for the 2018 survey. See Table 4 for species code definitions. Core, total biomass from valid core tows (200–800 m); Deep, total biomass from valid deep tows (800–1300 m); Total, total biomass from all valid tows (200–1300 m); –, no data.

						Species code
Stratum	НОК	HAK	LIN	GSH	GSP	LDO
1	547 (12.9)	23 (50.5)	187 (48.5)	_	42 (36.6)	37 (31.1)
2A	849 (16.3)	19 (40.9)	46 (51.0)	_	47 (17.6)	18 (39.4)
2B	2 386 (26.3)	152 (59.0)	152 (28.5)	_	50 (38.3)	148 (22.4)
3	804 (12.0)	- -	282 (20.1)	315 (19.1)	_	251 (15.2)
4	2 918 (61.8)	_	768 (58.0)	_	164 (43.7)	142 (46.8)
5	1 528 (28.4)	55 (56.9)	255 (33.7)	379 (19.4)	_	369 (21.3)
6	1 673 (47.9)	30 (100)	156 (50.0)	_	184 (45.0)	_
7A	4 207 (43.5)	218 (83.2)	865 (33.2)	37 (77.1)	50 (50.6)	175 (28.6)
7B	362 (21.0)	565 (89.0)	147 (46.2)	13 (68.1)	6 (75.4)	47 (54.7)
8A	1 001 (49.1)	3 (100)	173 (76.7)	9 (100)	10 (55.7)	42 (54.4)
8B	2 434 (46.3)	20 (50.5)	251 (42.6)	90 (100)	45 (50.2)	225 (24.1)
9	232 (100)	_	118 (100)	402 (56.9)	_	133 (100)
10	2 440 (28.1)	136 (44.4)	263 (29.0)	96 (85.9)	97 (42.2)	212 (25.6)
11	15 813 (73.0)	170 (68.7)	620 (21.0)	391 (46.8)	9 (65.6)	2 855 (82.1)
12	7 432 (34.0)	61 (68.8)	610 (30.7)	57 (100)	174 (45.9)	543 (22.7)
13	2 228 (22.1)	79 (100)	473 (27.0)	75 (73.0)	195 (78.4)	555 (26.7)
14	2 832 (51.0)	5 (100)	368 (14.4)	4 (100)	77 (46.8)	104 (31.3)
15	11 083 (47.7)	50 (100)	1 062 (22.2)	263 (31.1)	123 (42.1)	1 132 (45.7)
16	19 585 (30.1)	26 (100)	1 433 (49.5)	40 (100)	271 (23.7)	1 650 (54.8)
17	9 877 (95.6)	_	56 (48.3)	583 (47.1)	_	4 (66.7)
18	21 458 (39.8)	36 (72.9)	98 (62.1)	970 (42.4)	_	390 (57.8)
19	1 246 (47.9)	_	69 (82.1)	333 (29.1)	_	186 (87.7)
20	9 162 (21.3)	11 (100)	306 (45.0)	1 520 (49.6)	_	315 (28.2)
Core	122 097 (16.0)	1 660 (34.3)	8 758 (11.5)	5 580 (17.5)	1 544 (15.0)	9 535 (27.2)
21A	63 (54.2)	3 (100)	5 (100)	_	3 (69.9)	2 (100)
21B	261 (18.3)	7 (100)	4 (100)	_	20 (13.0)	4 (66.0)
22	629 (19.0)	138 (45.9)	8 (100)	_	29 (24.4)	2 (100)
23	-	5 (100)	-	-	9 (100)	-
24	108 (76.1)	-	-	-	6 (100)	-
25	177 (25.1)	-	10 (100)	-	17 (60.6)	6 (100)
26	200 (36.9)	-	-	-	23 (27.8)	3 (100)
27	10 758 (98.3)	-	-	-	298 (56.9)	-
28	-	-	_	_	8 (100)	-
29	-	-	_	_	_	-
30	-	-	_	_	_	-
Deep	12 196 (16.5)	153 (31.6)	28 (11.5)	- (17.5)	413 (14.7)	17 (27.2)
Total	134 293 (16.5)	1 813 (31.6)	8 785 (11.5)	5 580 (17.5)	1 957 (14.7)	9 552 (27.2)

Table 7a (continued)

						Species code
Stratum	SPE	SPD	SWA	WWA	GIZ	RIB
1	24 (42.6)	_	_	_	_	25 (30.3)
2A	9 (20.6)	_	_	_	_	23 (39.7)
2B	35 (37.4)	_	_	44 (100)	24 (100)	62 (41.3)
3	95 (51.3)	589 (11.9)	8 (90.3)	33 (49.7)	2 (100)	
4	16 (53.3)	_ _	_	_	_	30 (52.5)
5	86 (41.7)	938 (5.5)	157 (90.6)	43 (28.6)	58 (85.5)	_
6	_	_	_	_	_	53 (51.5)
7A	51 (62.2)	191 (73.4)	58 (90.4)	3 (100)	57 (71.1)	13 (100)
7B	49 (21.0)	46 (50.3)	_	75 (97.2)	6 (92.7)	4 (100)
8A	75 (72.0)	62 (80.4)	_	16 (100)	27 (100)	-
8B	62 (15.3)	114 (64.3)	51 (86.6)	_	_	-
9	18 (56.2)	1 317 (46.2)	767 (92.2)	94 (100)	118 (41.7)	-
10	86 (37.5)	288 (78.6)	16 (57.7)	83 (51.3)	-	-
11	155 (25.5)	1 028 (45.9)	19 (53.4)	280 (57.6)	311 (71.1)	6 (85.1)
12	82 (41.7)	239 (85.5)	1 (100)	1 (100)	113 (30.8)	16 (100)
13	64 (6.9)	576 (7.7)	40 (57.9)	26 (30.5)	5 (100)	-
14	80 (81.9)	733 (12.4)	473 (58.1)	71 (49.6)	_	-
15	331 (22.7)	426 (27.9)	208 (53.8)	810 (86.5)	372 (21.1)	-
16	464 (73.2)	560 (39.9)	1 409 (80.7)	261 (63.4)	147 (55.1)	42 (100)
17	11 (73.9)	43 (37.3)	181 (65.3)	22 (96.9)	110 (35.2)	-
18	299 (70.0)	1 022 (23.8)	1 139 (39.2)	66 (80.7)	1 377 (53.6)	-
19	1 539 (15.6)	735 (21.7)	8 239 (67.1)	40 (63.4)	204 (33.4)	-
20	1 119 (20.2)	1 268 (30.0)	186 (35.8)	134 (47.9)	106 (33.6)	-
Core	4 749 (11.3)	10 175 (10.0)	12 953 (44.2)	2 102 (36.0)	3 035 (26.0)	275 (23.2)
21A	2 (100)	_	_	_	_	5 (67.7)
21B	1 (100)	-	-	_	-	20 (53.7)
22	5 (100)	_	_	—	8 (100)	26 (40.7)
23	-	-	-	-	_	-
24	-	-	-	-	-	_
25	-	_	_	-	-	28 (18.2)
26	-	4 (100)	4 (100)	-	-	-
27	-	-	-	-	-	-
28	-	-	-	-	-	-
29	_	-	-	_	_	_
30	-	-	-	-	-	-
Deep	8 (11.3)	4 (9.9)	4 (44.1)	- (36.0)	8 (25.9)	79 (18.6)
Total	4 757 (11.3)	10 179 (9.9)	12 957 (44.1)	2 102 (36.0)	3 043 (25.9)	354 (18.6)

						Species code
Stratum	BOE	SSO	SOR	SND	СҮР	ETB
1	_	9 (21.7)	298 (59.5)	559 (19.4)	139 (94.3)	_
2A	2 (50.6)	_	30 (61.9)	672 (21.0)	470 (77.3)	10 (100)
2B	- -	4 (100)	2 045 (42.1)	637 (26.6)	22 (100)	- -
3	_	_	_		- -	_
4	111 (94.2)	10 (100)	213 (49.1)	1 364 (49.7)	83 (51.0)	3 (70.1)
5	_	_	_	_	_	_
6	12 234 (58.0)	2 510 (63.2)	_	_	40 (62.1)	272 (45.0)
7A	- -	_	5 (100)	87 (100)	7 (100)	_
7B	_	_	5 (100)	_	_	_
8A	-	_	_	_	_	_
8B	_	_	_	_	_	_
9	_	_	_	_	_	_
10	_	_	19 (100)	61 (75.5)	_	_
11	_	_	93 (100)	67 (59.4)	_	_
12	_	102 (100)	1 428 (50.7)	119 (52.0)	_	_
13	_	_	_	- -	_	_
14	11 (100)	_	_	_	_	_
15	_	_	_	_	_	_
16	-	_	_	_	_	24 (63.0)
17	-	_	_	_	_	_
18	_	_	_	_	_	_
19	_	_	_	_	_	_
20	_	_	_	_	_	_
Core	12 359 (57.4)	2 634 (60.4)	4 137 (27.7)	3 567 (20.5)	760 (51.3)	309 (40.1)
21A	-	2 (42.4)	30 (68.8)	89 (35.6)	20 (78.9)	5 (50.8)
21B	1 (100)	5 (47.4)	165 (41.4)	353 (41.3)	310 (52.8)	9 (73.3)
22	-	8 (75.9)	6 (91.9)	205 (9.6)	325 (21.3)	4 (100)
23	-	45 (72.7)	_	17 (35.0)	41 (75.3)	14 (45.1)
24	-	480 (96.3)	_	102 (51.3)	174 (65.0)	35 (62.4)
25	286 (100)	3 (90.6)	92 (79.5)	856 (48.1)	234 (48.3)	22 (100)
26	1 770 (35.1)	1 186 (49.3)	_	35 (100)	13 (77.5)	78 (29.9)
27	91 416 (94.5)	22 368 (95.1)	_	10 (100)	22 (90.0)	1 231 (69.1)
28	5 (100)	9 343 (99.5)	19 (100)	92 (100)	24 (90.7)	145 (60.6)
29	_	74 (29.0)	_	_	_	17 (20.8)
30	_	_	_	_	_	79 (30.8)
Deep	93 478 (81.9)	33 514 (64.4)	312 (25.9)	1 759 (16.2)	1 164 (23.9)	1 638 (44.4)
Total	105 837 (81.9)	36 148 (64.4)	4 450 (25.9)	5 326 (16.2)	1 924 (23.9)	1 947 (44.4)

Table 7a (continued)

Table 7a (contin	ued)
------------------	------

_						Species code
Stratum	SBI	SSM	BEE	CSU	СВО	JAV
1	_	_	_	1 (100)	92 (31.1)	249 (36.1)
2A	_	_	_	13 (52.0)	8 (51.4)	114 (35.0)
2B	_	_	_	1 (100)	117 (19.8)	426 (15.0)
3	_	_	_	_	166 (21.5)	97 (54.3)
4	_	_	_	_	123 (59.0)	583 (22.9)
5	-	_	_	_	170 (33.1)	134 (35.2)
6	-	_	21 (52.2)	_	78 (37.7)	455 (33.6)
7A	_	_	_	_	790 (42.9)	628 (32.2)
7B	-	_	_	_	183 (67.8)	43 (45.5)
8A	_	_	_	_	41 (50.1)	50 (71.4)
8B	_	_	_	3 (100)	21 (34.5)	64 (21.3)
9	-	_	_	_	3 (100)	60 (100)
10	_	_	_	_	142 (53.2)	116 (15.1)
11	_	_	_	_	455 (18.3)	1 925 (80.1)
12	_	_	_	_	305 (37.2)	152 (30.1)
13	_	_	_	_	178 (34.1)	124 (34.0)
14	_	_	_	_	76 (14.4)	84 (28.5)
15	-	_	_	_	1 463 (29.5)	346 (27.1)
16	-	_	_	_	1 748 (44.0)	1 041 (29.5)
17	_	_	_	_	_	- (100)
18	-	_	_	_	213 (54.0)	230 (68.2)
19	-	_	_	_	24 (64.6)	145 (62.1)
20	-	_	_	_	94 (30.5)	105 (25.6)
Core	-	_	21 (52.2)	18 (41.4)	6 490 (15.1)	7 173 (22.6)
21A	47 (100)	1 (100)	8 (100)	2 (52.3)	2 (100)	29 (58.4)
21B	-	_	8 (82.6)	68 (30.7)	1 (100)	82 (40.0)
22	2 (100)	4 (100)	14 (100)	256 (59.6)	19 (93.1)	25 (64.3)
23	743 (40.0)	201 (32.6)	511 (31.5)	566 (32.9)	_	-
24	280 (12.2)	-	257 (24.4)	172 (47.7)	_	1 (100)
25	-	-	-	16 (70.4)	3 (36.2)	470 (57.1)
26	-	4 (100)	55 (49.7)	7 (31.9)	—	42 (46.3)
27	-	102 (71.4)	170 (19.0)	38 (100)	_	111 (91.8)
28	845 (18.5)	770 (47.6)	253 (33.8)	29 (68.8)	_	2 (100)
29	681 (16.9)	444 (24.2)	77 (20.3)	_	_	-
30	163 (45.2)	450 (23.8)	160 (39.8)	_	_	-
Deep	2 762 (13.3)	1 975 (20.7)	1 513 (13.6)	1 156 (22.1)	25 (15.1)	762 (20.7)
Total	2 762 (13.3)	1 975 (20.7)	1 534 (13.6)	1 174 (22.1)	6 515 (15.1)	7 935 (20.7)

Table 7b: Estimated relative biomass (t) and coefficient of variation (% CV) for pre-recruit (nominally < 20 cm SL), 20–30 cm, recruited (nominally > 30 cm SL), and total orange roughy. Core, total biomass from valid core tows (200–800 m; Deep, total biomass from valid deep tows (800–1300 m); Total, total biomass from all valid tows (200–1300 m); –, no data.

Stratum	Small	Medium	Large	Total
1	_	_	4 (100)	4 (100)
2A	14 (94.8)	16 (58.8)	5 (12.0)	35 (65.9)
2B	_	_	_	_
3	_	-	_	_
4	_	_	-	-
5	_	_	-	-
6	_	_	-	-
7A	_	_	-	-
7B	_	_	-	-
8A	_	_	-	-
8B	-	-	-	-
9	-	-	-	-
10	-	-	-	-
11	-	-	-	-
12	-	-	-	-
13	-	_	-	-
14	-	_	-	-
15	_	_	-	-
16	_	_	-	-
17	_	_	-	-
18	-	-	-	-
19	-	-	-	-
20	_	_	_	_
Core	14 (94.8)	16 (58.8)	10 (46.3)	40 (59.6)
21A	1 (57.5)	9 (83.9)	21 (100)	31 (91.6)
21B	7 (26.8)	51 (61.2)	77 (65.8)	135 (61.3)
22	24 (51.3)	80 (34.1)	199 (61.3)	303 (43.0)
23	2 (82.7)	10 (45.7)	135 (28.8)	147 (27.7)
24	_	58 (29.6)	443 (40.7)	501 (39.3)
25	4 (70.0)	20 (57.7)	23 (76.3)	48 (55.5)
26	_	_	-	-
27	-	-	-	-
28	1 (100)	8 (63.8)	90 (85.8)	98 (84.0)
29	-	-	-	-
30	_	_	-	-
Deep	39 (32.9)	236 (20.1)	988 (24.4)	1 262 (21.3)
Total	54 (35.0)	251 (19.2)	997 (24.2)	1 302 (20.8)

Table 8: Total numbers of fish, squid and scampi measured for length frequency distributions and biological samples from all tows. The total number of fish measured is sometimes greater than the sum of males and females because some fish were unsexed.

			Number n	Number of	
Common name	Species code	Males	Females	Total	biological samples
Abyssal rattail	CMU	-	Temates 7	10tai 7	3
Alfonsino	BYS	752	621	1 435	31
Arrow squid	NOS	390	427	825	50
Banded bellowsfish	BBE	18	30	2 055	50
Banded rattail	CFA	254	309	579	32
Barracouta	BAR	19	43	62	6
Barracudinas	PAL	1	1	2	1
Basketwork eel	BEE	97	382	484	27
Bass groper	BAS	2	-	2	1
Baxters lantern dogfish	ETB	125	147	272	37
Bigeye cardinalfish	EPL	63	38	102	9
Bigscaled brown slickhead	SBI	409	729	1 141	17
Black ghost shark	HYB	3	1	4	3
Black javelinfish	BJA	68	64	136	13
Black oreo	BOE	1 008	962	1 979	19
Black slickhead	BSL	215	184	423	13
Blackspot rattail	VNI	-	5	5	3
Blue mackerel	EMA	-	1	1	1
Bluenose	BNS	5	8	13	5
Bollons' rattail	CBO	1 289	1 270	2 569	76
Bonyskull toadfish	COT	1	1	2	1
Broadnose sevengill shark	SEV	1	-	1	1
Cape scorpionfish	TRS	6	5	11	7
Capro dory	CDO	1	1	151	2
Carpet shark	CAR	1	-	1	1
Catshark	APR	20	21	42	24
Chimaera, brown	CHP	1	3	4 7	3
Common halosaur	HPE	2	5		3
Common roughy	RHY CON	97	140	245	6
Conger eel	CHQ	-	1	1 10	1 4
Cranchiid squid Crested bellowsfish	CBE	-	4	10 91	4 3
Dark banded rattail	CDX	- 1	- 4	91	1
Dark ghost shark	GSH	908	1 064	1 973	50
Dawson's catshark	DCS	1	1 004	2	2
Dealfish	DEA	-	-	1	1
Deepsea cardinalfish	EPT	93	48	237	17
Deepsea flathead	FHD	2	4	6	5
Deepwater spiny skate (Arctic skate)	DSK	-	3	3	2
Electric ray	ERA	2	-	2	2
Filamentous rattail	GAO	1	1	3	2
Finless flounder	MAN	1	2	6	4
Four-rayed rattail	CSU	828	1 1 1 4	2 056	35
Frill shark	FRS	-	1	1	1
Frostfish	FRO	49	22	72	5
Gemfish	RSO	2	14	16	1
Giant spineback	NOC	-	1	1	1
Giant stargazer	GIZ	179	247	426	47
Hairy conger	HCO	20	25	45	24
Hake	HAK	143	115	259	42
Hapuku	HAP	9	7	16	9
Hoki	HOK	7 360	9 326	16 713	111
Humpback rattail	CBA	-	6	6	6
Jack mackerel	JMD	11	5	16	1
Javelin fish	JAV	1 513	5 006	6 983	98
Johnson's cod	HJO	452	406	862	46
Kaiyomaru rattail	CKA	4	4	32	10
Leafscale gulper shark	CSQ	10	19	29	16
Lemon sole	LSO	16	9 570	26	10
Ling	LIN	569	579	1 149	77

Table 8 (continued)

Table 8 (continued)		Number measured			Number of
Common name	Species code		Females	Total	biological samples
Long-nosed chimaera	LCH	127	135	263	54
Longfinned beryx	BYD	3	3	6	1
Longnose velvet dogfish	CYP	527	378	914	41
Longnosed deepsea skate	PSK	2	2	4	4
Lookdown dory	LDO	1554	1915	3504	80
Lucifer dogfish	ETL	91	87	178	41
Mahia rattail	CMA	23	43	66	18
Mirror dory	MDO	4	10	14	2
Squashed face rattail	NNA	0	1	1	1
Northern spiny dogfish	NSD	2	0	2	2
Notable rattail	CIN BER	128	115 0	287	31 1
Numbfish Oblique banded rattail	CAS	1 251	1916	1 2218	45
Oliver's rattail	COL	563	602	1257	36
Orange perch	OPE	216	257	475	8
Orange roughy	ORH	383	394	810	27
Pale ghost shark	GSP	130	153	283	68
Pale toadfish	TOP	2	2	4	2
Pigfish	PIG	3	6	9	1
Plunket's shark	PLS	4	3	7	7
Pointynose blue ghost shark	HYP	0	1	1	1
Prickly deepsea skate	BTS	4	8	12	10
Prickly dogfish	PDG	7	4	11	8
Sea cucumber	PMO	0	0	87	21
Blobfish	PSY	1	0	1	1
Ray's bream	RBM	1	1	3	1
Red cod	RCO	553	255	810	29
Redbait	RBT	7	4	11	3
Ribaldo	RIB	51	32	83	33
Ridge scaled rattail	MCA	115	131	251	21
Robust cardinalfish	EPR RSK	101 1	75 1	177 2	3 2
Rough skate Roughhead rattail	CHY	16	30	46	10
Spotty faced rattail	CTH	10	2	-+0	3
Rubyfish	RBY	0	2	2	2
Rudderfish	RUD	7	5	13	8
Scaly gurnard	SCG	0	0	18	3
Scampi	SCI	28	17	49	25
School shark	SCH	14	3	17	11
Sea perch	SPE	1480	1477	3021	82
Seal shark	BSH	14	20	34	22
Serrulate rattail	CSE	113	68	182	24
Shovelnose dogfish	SND	639	494	1133	51
Silver dory	SDO	107	87	195	7
Silver roughy	SRH	22	25	50	5
Silver warehou	SWA	793	635	1555	53
Silverside	SSI	30 2	14 1	534 3	29 2
Sixgill shark Slender mackerel	HEX JMM	8	24	32	4
Small-headed cod	SMC	14	5	19	12
Small banded rattail	CCX	28	35	67	11
Smallscaled brown slickhead	SSM	260	345	607	18
Smooth deepsea skate	BTA	6	3	9	8
Smooth oreo	SSO	959	840	1812	40
Smooth skate	SSK	13	25	38	26
Smooth skin dogfish	CYO	92	52	144	26
Southern blue whiting	SBW	115	78	193	14
Southern Ray's bream	SRB	206	220	430	28
Spiky oreo	SOR	638	602	1254	31
Spineback	SBK	34	394	430	49

Table 8 (continued)

Table 8 (continued)					
		Number measured			Number of
Common name	Species code	Males	Females	Total	biological samples
Spiny dogfish	SPD	542	1800	2342	64
Swollenhead conger	SCO	22	25	47	24
Tarakihi	NMP	161	74	235	4
Thin tongue cardinalfish	EPM	65	45	110	11
Todarodes squid	TSQ	0	0	46	30
Tasmanian ruffe	TUB	1	0	1	1
Two saddle rattail	CBI	134	228	365	12
Violet cod	VCO	27	40	91	7
Violet squid	VSQ	0	0	5	3
Warty oreo	WOE	56	44	101	7
Warty squid	MIQ	0	0	110	42
Warty squid	MRQ	0	0	27	13
White rattail	WHX	121	137	264	29
White warehou	WWA	323	296	685	50
Widenosed chimaera	RCH	38	23	61	25
Witch	WIT	0	7	8	4
Yellow boarfish	YBO	0	1	1	1
Yellow cod	YCO	0	1	1	1
Total		29006	38197	71746	2614

Table 9: Length-weight regression parameters* used to scale length frequencies (data from TAN1801). CSU used data from all surveys as the r² value was less than 90% for TAN1801 data. Length measurement method: TL, total length; FL, fork length, CL, chimaera length; SL, standard length. See Table 8 or Appendix 2 for species names.

					Length	Length	
Species code	a (intercept)	b (slope)	r^2	n	range (cm)	measurement	Data source
BEE	0.000350	3.259708	91.46	260	61–129	TL	TAN1801
BOE	0.013315	3.123983	92.44	214	23-36	TL	TAN1801
CSU	0.013162	2.463235	75.75	1640	18–39	TL	All surveys
ETB	0.002866	3.142041	98.22	217	22-81	TL	TAN1801
GIZ	0.005929	3.257813	98.31	278	20-81	TL	TAN1801
GSH	0.002108	3.253263	93.89	877	34–73	CL	TAN1801
GSP	0.005885	2.989363	94.86	278	29-86	CL	TAN1801
HAK	0.002389	3.252507	98.43	257	49–133	TL	TAN1801
HOK	0.003257	2.972003	98.96	1989	34-109	TL	TAN1801
LDO	0.021564	3.003671	98.05	1258	12–54	TL	TAN1801
LIN	0.001557	3.245637	99.20	1028	38-160	TL	TAN1801
ORH	0.047963	2.898138	99.01	385	7–43	SL	TAN1801
RIB	0.003675	3.284111	97.79	83	25-72	TL	TAN1801
SBI	0.002822	3.317428	95.82	319	22–54	FL	TAN1801
SND	0.002462	3.089224	97.08	613	30-116	TL	TAN1801
SOR	0.021113	3.022074	98.39	486	11–43	TL	TAN1801
SPD	0.000518	3.493754	92.99	993	53–96	TL	TAN1801
SPE	0.009635	3.151037	98.74	1081	9–47	TL	TAN1801
SSM	0.003962	3.208199	98.62	277	16–68	FL	TAN1801
SSO	0.024514	2.984632	98.89	384	16–56	TL	TAN1801
SWA	0.006585	3.258541	99.56	580	14–54	FL	TAN1801
WWA	0.012180	3.150018	99.19	437	15–65	FL	TAN1801

* W = aL^b where W is weight (g) and L is length (cm); r^2 is the correlation coefficient, n is the sample size.

Table 10: Numbers of fish measured at each reproductive stage. MD, middle depths staging method; SS, Cartilaginous fish gonad stages — see footnote below table for staging details. –, no data.

Species	5		Staging				Rep	Reproductive stage			
code	Common name	Sex	method	1	2	3	4	5	6	7	Total
APR	Catshark	Female	SS	1	-	-	-	-	-	-	1
DAD	(Apristurus spp.)	Male	MD	2	2	11	-	-	-	-	15
BAR	Barracouta	Female Male	MD	-	-	41 1	2 15	-3	-	-	43 19
BAS	Bass groper	Female	MD	-	-	-	-	-	-	-	-
	8	Male		-	1	1	-	-	-	-	2
BBE	Banded bellowsfish	Female	MD	5	17	2	-	-	-	-	24
DEE	Deslectore de sel	Male	МЪ	9	7	1	-	-	-	-	17
BEE	Basketwork eel	Female Male	MD	1 5	101 27	32	-	-	-	-	134 32
BER	Numbfish	Female	SS	-	-	-	-	-	-	-	-
		Male		-	-	1	-	-	-	-	1
BJA	Black javelinfish	Female	MD	-	32	5	2	1	-	-	40
BNS	Bluenose	Male Female	MD	3	25 7	1 1	1	-	-	-	30 8
DINS	Diuenose	Male	MD	- 1	2	2	-	-	-	-	8 5
BOE	Black oreo	Female	MD	173	196	190	3	-	-	1	563
		Male		264	216	71	5	-	-	-	556
BSH	Seal shark	Female	SS	17	1	1	-	-	-	-	19
BSL	Black slickhead	Male Female	MD	11 14	1 3	2 61	- 5	-	- 1	-	14 84
DOL	DIACK SHCKHEAU	Male	MD	14	5 75	1	-	-	-	-	84 84
BTA	Smooth deepsea skate	Female	SS	2	-	1	-	-	-	-	3
	-	Male		-	1	5	-	-	-	-	6
BTS	Prickly deepsea skate	Female	SS	2	3	2	1	-	-	-	8
BYD	Longfinned beryx	Male Female	MD	3 1	2	1	-	-	-	-	4 3
ыр	Longinnied beryx	Male	MD	1	2	-	-	-	-	-	3
BYS	Alfonsino	Female	MD	72	62	-	-	-	-	6	140
		Male		109	66	-	-	-	-	-	175
CAR	Carpet shark	Female	SS	-	-	-	-	-	-	-	-
CAS	Oblique banded rattail	Male Female	MD	- 44	- 227	1 5	-	-	-	-	1 277
CAS	Oblique Danded Tattan	Male	MID	7	7	-	-	-	-	-	14
CBA	Humpback rattail	Female	MD	-	5	-	-	-	-	-	5
GD I		Male		-	-	-	-	-	-	-	-
CBI	Two saddle rattail	Female Male	MD	3 2	62 50	49 12	3 1	-	1 -	1	119 65
CBO	Bollons' rattail	Female	MD	24	332	2	-	-	-	- 1	359
СБО	Donons Tuttun	Male	MD	35	266	-	-	1	-	-	302
CCX	Small banded rattail	Female	MD	1	2	5	4	-	-	-	12
an 0	<i>a</i> 1	Male		-	6	5	-	-	-	-	11
CDO	Capro dory	Female	MD	-	- 1	1	-	-	-	-	1
CDX	Dark banded rattail	Male Female	MD	-	-	-	-	-	-	-	1
CDII	Duni cuntee ratan	Male		1	-	-	-	-	-	-	1
CFA	Banded rattail	Female	MD	16	116	4	-	-	-	-	136
CUD	D 1'	Male	00	48	53	-	-	-	-	-	101
CHP	Brown chimaera	Female Male	SS	1	2	-1	-	-	-	-	3
CHY	Roughhead rattail	Female	MD	3	2	24	1	-	-	-	30
		Male		2	10	4	-	-	-	-	16
CIN	Notable rattail	Female	MD	9	42	20	-	-	-	-	71
CVA	Vaivaman	Male	MD	21	87	-	-	-	-	-	108
СКА	Kaiyomaru rattail	Female Male	MD	1 1	1 3	2	-	-	-	-	4 4
CUN	Spotty faced rattails		МЪ	1	5		-				
СКХ	(CHY and CTH)	Female	MD	-	-	1	-	-	-	-	1
		Male		-	-	-	-	-	-	-	-

Specie	s		Staging					Reproductive stage				
code	Common name	Sex	method	1	2	3	4	5	6	7	Total	
	Mahia rattail	Female		2	34	1	2	-	-	1	40	
CMA	Walla lattall	Male	MD	-	21	1	-	-	-	-	22	
CMU	Murray's rottail	Female	MD				-	-	-			
CMU	Murray's rattail		MD	1	5	-	-	-	-	-	6	
COL		Male		-	-	-	-	-	-	-	-	
COL	Oliver's rattail	Female	MD	33	137	3	-	-	-	-	173	
		Male		15	70	1	-	-	-	-	86	
CON	Conger eel	Female	MD	-	1	-	-	-	-	-	1	
		Male		-	-	-	-	-	-	-	-	
CSE	Serrulate rattail	Female	MD	3	30	17	-	-	-	-	50	
		Male		3	76	3	-	-	-	-	82	
CSQ	Leafscale gulper shark	Female	SS	2	11	3	1	-	-	-	17	
-	0	Male		3	1	5	-	-	-	-	9	
CSU	Four-rayed rattail	Female	MD	54	195	69	-	-	-	-	318	
	5	Male		38	66	1	-	-	-	-	105	
CTH	Roughhead rattail	Female	MD	-	1	-	_	_	_	-	1	
0111	Rouginioud futuri	Male	MLD	-	1	-	-	-	-	-	1	
CYO	Smooth skin dogfish	Female	22	11	29	6	2	1	2	_	51	
CIU	Shiootii skiii dogiisii		55	14	3	74	-	-	-	_	91	
CVD		Male	00									
CYP	Longnose velvet dogfish	Female	SS	144	59	25	11	5	-	-	244	
5 66		Male	~~	120	26	100	-	-	-	-	246	
DCS	Dawson's catshark	Female	SS	-	-	1	-	-	-	-	1	
		Male		-	1	-	-	-	-	-	1	
DSK	Deepwater spiny skate (Arctic skate)	Female	SS	2	1	-	-	-	-	-	3	
		Male		-	-	-	-	-	-	-	-	
EMA	Blue mackerel	Female	MD	-	1	-	-	-	-	-	1	
		Male		-	-	-	-	-	-	-	-	
EPL	Bigeye cardinalfish	Female	MD	6	11	-	-	-	-	-	17	
		Male		10	27	1	-	-	-	-	38	
EPM	Thin tongue cardinalfish	Female	MD	2	5	33	5	_	_	-	45	
21111		Male		3	25	36	1	_	_	-	65	
EPR	Robust cardinalfish	Female	MD	-	1	21	-	_	-	-	22	
LIK	Robust curdinarisii	Male	MID	1	13	31	_	_	_	-	45	
EPT	Deepsea cardinalfish	Female	MD	21	4	1	-	-	-	_	26	
	Deepsea cardinanisii		MD	59			-	-	-			
ED A		Male	66		3	-	-	-	-	-	62	
EKA	Electric ray	Female	22	-	-	-	-	-	-	-	-	
		Male	~~	-	1	1	_	-	-	-	2	
ETB	Baxter's lantern dogfish	Female	SS	28	65	26	7	-	20	-	146	
		Male		31	11	81	-	-	-	-	123	
ETL	Lucifer dogfish	Female	SS	36	31	9	4	3	-	-	83	
		Male		32	34	25	-	-	-	-	91	
FHD	Deepsea flathead	Female	MD	1	2	-	-	-	1	-	4	
		Male		-	2	-	-	-	-	-	2	
FRO	Frostfish	Female	MD	3	4	3	1	-	-	-	11	
		Male		-	7	9	7	1	-	-	24	
FRS	Frill shark	Female	SS	-	-	1	-	-	_	-	1	
1115		Male	22	_	-	-	_	_	_	_	-	
GAO	Filamentous rattail	Female	MD		_						_	
UAU	Thanientous fattan	Male	MD	-	-	-	-	-	-	-	- 1	
017			MD	-				-				
GIZ	Giant stargazer	Female	MD	36	58	109	9	-	3	7	222	
0.011		Male	~~	24	113	9	-	-	-	-	146	
GSH	Dark ghost shark	Female	<u>SS</u>	80	247	136	5	-	-	-	468	
		Male		45	40	306	-	-	-	-	391	
GSP	Pale ghost shark	Female	SS	21	75	54	1	-	-	-	151	
		Male		27	16	86	-	-	-	-	129	
HAK	Hake	Female	MD	19	20	65	5	1	-	5	115	
		Male		25	14	7	26	28	39	4	143	
HAP	Hapuku	Female	MD	-	7	-	-	-	-	-	7	
	-	Male		2	4	2	-	-	1	-	9	
HCO	Hairy conger	Female	MD	-	11	9	-	-	-	-	20	
	, ,	Male		1	10	5	-	-	-	-	16	
					10	5					10	

Specie	s		Staging Reproductives								
code	Common name	Sex	method	1	2	3	4	5	6	7	Total
HEX	Sixgill shark	Female		1	-	-	-	-	-	-	1
	C	Male		2	-	-	-	-	-	-	2
HJO	Johnson's cod	Female	MD	72	117	30	-	-	-	-	219
		Male		110	131	56	32	-	-	-	329
HOK	Hoki	Female	MD	6 895	2 380	1	3	2	-	13	9 294
		Male		6 384	909	1	1	-	-	3	7 298
HPE	Common halosaur	Female	MD	-	-	5	-	-	-	-	5
		Male	0.0	-	1	1	-	-	-	-	2
HYB	Black ghost shark	Female	55	-	-	1	-	-	-	-	1
UVD	Deintrugge blue about should	Male	66	-	-	3 1	-	-	-	-	3
HYP	Pointynose blue ghost shark	Male	22	-	-	-	-	-	-	-	1
JAV	Javelinfish	Female	MD	72	558	38	-	-	-	3	- 671
JAV	Javenninsii	Male	MD	72	65	48	-	-	-	-	186
JMD	Jack mackerel	Female	MD	-	-	40 5	_	-	_	_	5
JMD	Jack macketer	Male	MID	_	-	1	5	5	_	_	11
IMM	Slender mackerel	Female	MD	-	1	20	-	1	_	_	22
0101101	Stender macherer	Male	101D	-	1	-	4	-	_	-	5
LCH	Long-nosed chimaera	Female	SS	38	59	31	1	_	_	-	129
Len	Long hosed eminaera	Male	55	27	12	69	-	_	-	-	108
LDO	Lookdown dory	Female	MD	136	316	287	3	_	1	26	769
22.0	Loondo (in dory	Male	1112	89	378	81	37	-	-	2	587
LIN	Ling	Female	MD	181	387	6	_	-	-	2	576
	8	Male		184	214	93	73	_	3	-	567
LSO	Lemon sole	Female	MD	_	2	1	_	-	-	-	3
		Male		2	5	-	-	-	-	-	7
MAN	Finless flounder	Female	MD	-	2	-	-	-	-	-	2
		Male		-	-	-	-	-	-	-	-
MCA	Ridge scaled rattail	Female	MD	36	67	9	-	-	-	-	112
		Male		55	43	1	1	-	-	-	100
MDO	Mirror dory	Female	MD	-	5	-	-	-	-	-	5
		Male		1	3	-	-	-	-	-	4
NMP	Tarakihi	Female	MD	-	14	11	2	1	-	-	28
		Male		-	2	15	4	2	-	-	23
NNA	Squashed face rattail	Female	MD	-	1	-	-	-	-	-	1
	<u>.</u>	Male		-	-	-	-	-	-	-	-
NOC	Giant spineback	Female	MD	-	1	-	-	-	-	-	1
		Male		-	-	-	-	-	-	-	-
NSD	Northern spiny dogfish	Female	SS	-	-	-	-	-	-	-	-
ODE		Male		1	-	1	-	-	-	-	2
OPE	Orange perch	Female	MD	2	9	43	7	1	-	-	62 26
ODU	One and the second	Male	MD	5	10	12	5	4	-	-	36
ОКП	Orange roughy	Female Male	MD	112 125	90 126	100 41	-	-	-	-	302 292
PAL	Barracudinas	Female	MD	125	120	41	-	-	-	-	292
IAL	Darracudinas	Male	MD	-	1	-	-	-	-	-	1
PDG	Prickly dogfish	Female	22	- 1	2	- 1	-	-	-	-	4
TDO	Thekry dogitsh	Male	55	-	-	7	_	-	-	-	7
PLS	Plunket's shark	Female	SS	_	3	-	_	_	_	_	3
I LD	Tunket's shurk	Male	55	_	-	4	_	_	_	_	4
PSK	Longnosed deepsea skate	Female	SS	1	-	1	-	_	_	_	2
1.011	Longhosed deepsed skale	Male	66	-	1	1	-	_	_	_	2
PSY	Blobfish	Female	MD	-	-	-	-	-	-	-	-
		Male		-	1	-	-	_	-	-	1
RBM	Ray's bream	Female	MD	-	1	-	-	-	-	-	1
		Male		-	1	-	-	-	-	-	1
RBT	Redbait	Female	MD	-	-	3	1	-	-	-	4
		Male		-	-	2	1	-	-	-	3
RBY	Rubyfish	Female	MD	-	1	1	-	-	-	-	2
		Male		-	-	-	-	-	-	-	-

Specie	es		Staging Reproductive sta								e stage
code	Common name	Sex	method	1	2	3	4	5	6	7	Total
	Widenosed chimaera	Female	SS	6	11	3	1	-	1	-	22
KCII	widenosed emmaera	Male	55	15	5	18	-	-	1	_	38
RCO	Red cod	Female	MD	70	60	16	5	_	1	_	152
RCO	Ked cou	Male	IVID	83	34	34	31	3	1	_	132
RHV	Common roughy	Female	MD	-	2	15	12	12	-	_	41
KII I	Common roughy	Male	IVID	1	32	-	12	12	-	_	33
RIB	Ribaldo	Female	MD	2	26	3	-	-	-	_	31
KID	Kibaido	Male	WID	2	33	15	_	_	_	_	50
RSK	Rough skate	Female	SS	1	-	-	_	_	_	-	1
Ron	Rough skute	Male	55	-	-	1	_	_	_	_	1
RSO	Gemfish	Female	MD	1	13	-	_	_	_	-	14
100	Common	Male	1012	1	13	-	-	-	-	-	2
RUD	Rudderfish	Female	MD	-	2	3	-	-	_	_	5
Reb		Male	1012	_	1	1	4	_	_	-	6
SBI	Bigscaled brown slickhead	Female	MD	22	46	108	35	14	1	-	226
521	Digsealed of o will sherilited	Male		11	30	20	12	1	1	-	75
SBK	Spineback	Female	MD	4	42	177	20	2	-	3	248
5211	Spinecuen	Male		3	3	3	12	5	-	-	26
SBW	Southern blue whiting	Female	MD	5	44	-	-	-	_	-	49
50.0	Soutient blue witting	Male	MD	18	47	-	_	_	_	-	65
SCH	School shark	Female	SS	2	1	-	_	_	_	_	3
ben	Senoor shark	Male	55	1	2	9	_	_	_	-	12
SCO	Swollenhead conger	Female	MD	2	10	10	-	_	_	-	22
500	5 wonennead conger	Male	MD	3	10	4	-	_	_	_	17
SDO	Silver dory	Female	MD	5	15	1	2	3	_	-	26
520	Shiver dory	Male	1012	15	29	-	-	-	_	-	44
SEV	Broadnose sevengill shark	Female	SS	-	-	-	-	-	_	-	-
SE (broadhose sevengin shark	Male	55	1	-	-	_	_	_	_	1
SMC	Small-headed cod	Female	MD	2	2	-	-	_	_	-	4
bine	Sman neaded cod	Male	MD	8	5	-	-	_	-	-	13
SND	Shovelnose dogfish	Female	SS	57	180	18	4	1	_	-	260
DIL	Shovemose dognam	Male	55	43	53	249	-	-	_	-	345
SOR	Spiky oreo	Female	MD	45	74	120	9	_	2	5	255
bolt	Spiky ofeo	Male	MD	61	118	40	9	-	-	1	229
SPD	Spiny dogfish	Female	SS	24	149	40	80	322	2	-	617
51 D	Spiny dognan	Male	55	1	14	205	-	- 522	-	-	220
SPE	Sea perch	Female	MD	87	277	4	2	15	-	-	385
SIL	beu peren	Male	MD	47	291	98	6	2	_	1	445
SRB	Southern Ray's bream	Female	MD	17	96	8	-	-	_	-	121
SKD	Soutien Ray s bream	Male	WID	24	75	4	_	_	_	_	103
SRH	Silver roughy	Female	MD	3	7	-	_	_	_	-	105
SIGI	Shiver loughy	Male	MD	4	6	2	_	_	_	_	10
SSI	Silverside	Female	MD	7	4	-	-	_	_	_	11
551	Shivershee	Male	1012	20	3	-	_	_	_	_	23
SSK	Smooth skate	Female	SS	3	14	-	-	_	_	-	17
551	Shiooth Skate	Male	55	4	7	2	_	_	_	_	13
SSM	Smallscaled brown slickhead		MD	30	, 97	26	1	_	_	_	154
55141	Sinunseured brown snekhead	Male	MD	25	53	20	10	_	_	-	109
SSO	Smooth oreo	Female	MD	312	185	125	6	1	_	1	630
550	Shioth field	Male	MD	370	187	86	63	2	_	-	708
SWA	Silver warehou	Female	MD	32	177	3	-	-	_	-	212
5	Shiver watchou	Male	MD	90	223	10	-	_	3	1	327
TOP	Pale toadfish	Female	MD	-	- 225	2	_	-	-	-	2
101		Male		_	2	-	_	-	_	_	2
TRS	Cape scorpionfish	Female	MD	_	5	_	_	-	_	_	5
	cape scorpioniisii	Male		2	4	_	_	-	_	_	6
VCO	Violet cod	Female	MD	25	15	_	_	_	_	_	40
100	. 10101 000	Male		18	3	-	-	-	_	-	40 21
VNI	Blackspot rattail	Female	MD	-	2	2	1	_	_	_	5
1111	2. achopor futuri	Male		-	-	-	-	-	_	_	-
		maie		-	-	-	_	_		-	_

Species	5	Stag	jing		Reproductive stage						
Code	Common name	Sex	method	1	2	3	4	5	6	7	Total
WHX	White rattail	Female	MD	8	95	6	-	-	-	1	110
		Male		29	62	2	-	-	-	-	93
WIT	Witch	Female	MD	-	5	-	-	-	-	-	5
		Male		-	-	-	-	-	-	-	-
WOE	Warty oreo	Female	MD	11	3	2	-	-	-	-	16
		Male		19	2	1	-	-	-	-	22
WWA	White warehou	Female	MD	85	69	26	-	-	1	-	181
		Male		116	71	6	-	-	11	1	205
YBO	Yellow boarfish	Female	MD	-	1	-	-	-	-	-	1
		Male		-	-	-	-	-	-	-	-
YCO	Yellow cod	Female	MD	1	-	-	-	-	-	-	1
		Male		-	-	-	-	-	-	-	-

Middle depths (MD) gonad stages: 1, immature; 2, resting; 3, ripening; 4, ripe; 5, running ripe; 6, partially spent; 7, spent (after Hurst et al. 1992).

Cartilaginous fish (SS) gonad stages: male – 1, immature; 2, maturing; 3, mature: female – 1, immature; 2, maturing; 3, mature; 4, gravid I; 5, gravid II; 6, post-partum.

Table 11: Average trawl catch (excluding benthic organisms) and acoustic backscatter from daytime core tows where acoustic data quality was suitable for echo integration on the Chatham Rise in 2001–18.

			Average acoustic backscatter (m ² km ⁻²)												
Year	No. of	Average trawl	Bottom 10 m	Bottom 50 m	All bottom marks	Entire echogram									
	recordings	catch (kg km ⁻²)			(to 100 m)										
2001	117	1 858	3.63	22.39	31.80	57.60									
2002	102	1 849	4.50	18.39	22.60	49.32									
2003	117	1 508	3.43	19.56	29.41	53.22									
2005	86	1 783	2.78	12.69	15.64	40.24									
2006	88	1 782	3.24	13.19	19.46	48.86									
2007	100	1 510	2.00	10.83	15.40	41.07									
2008	103	2 012	2.03	9.65	13.23	37.98									
2009	105	2 480	2.98	15.89	25.01	58.88									
2010	90	2 205	1.87	10.80	17.68	44.49									
2011	73	1 997	1.79	8.72	12.94	34.79									
2012	85	1 793	2.60	15.96	26.36	54.77									
2013	76	2 323	3.74	15.87	27.07	56.89									
2014	48	1 790	3.15	14.96	24.42	48.45									
2016	90	1 890	3.49	20.79	31.81	61.34									
2018	85	2 429	2.66	13.88	23.18	42.95									

Table 12: Estimates of the proportion of total daytime backscatter in each stratum and year on the Chatham Rise which is assumed to be mesopelagic fish (p(meso)s). Estimates were derived from the observed proportion of night backscatter in the upper 200 m corrected for the proportion of backscatter estimated to be in the surface acoustic deadzone.

				Stratum
Year	Northeast	Northwest	Southeast	Southwest
2001	0.64	0.83	0.81	0.88
2002	0.58	0.78	0.66	0.86
2003	0.67	0.82	0.81	0.77
2005	0.72	0.83	0.73	0.69
2006	0.69	0.77	0.76	0.80
2007	0.67	0.85	0.73	0.80
2008	0.61	0.64	0.84	0.85
2009	0.58	0.75	0.83	0.86
2010	0.48	0.64	0.76	0.63
2011	0.63	0.49	0.76	0.54
2012	0.40	0.52	0.68	0.79
2013	0.34	0.50	0.54	0.66
2014	0.54	0.62	0.74	0.78
2016	0.69	0.57	0.71	0.84
2018	0.44	0.50	0.75	0.60

Table 13: Mesopelagic indices for the Chatham Rise. Indices were derived by multiplying the total backscatter observed at each daytime trawl station by the estimated proportion of night-time backscatter in the same sub-area observed in the upper 200 m (see Table 12) corrected for the estimated proportion in the surface deadzone (from O'Driscoll et al. 2009). Unstratified indices for the Chatham Rise were calculated as the unweighted average over all available acoustic data. Stratified indices were obtained as the weighted average of stratum estimates, where weighting was the proportional area of the stratum (northwest 11.3% of total area, southwest 18.7%, northeast 33.6%, southeast 36.4%).

	Acoustic index (coustic index (m	1 ² km ⁻²)	
Survey	Year	Unstr	atified	Nor	theast	Nort	hwest	Sou	theast	Sout	hwest	St	ratified
		Mean	CV	Mean	CV	Mean	CV	Mean	CV	Mean	CV	Mean	CV
TAN0101	2002	47.1	8	21.8	11	61.1	13	36.8	12	92.6	16	44.9	8
TAN0201	2003	35.8	6	25.1	11	40.3	11	29.6	13	54.7	13	34.0	7
TAN0301	2004	40.6	10	30.3	23	32.0	12	52.4	19	53.9	11	42.9	10
TAN0501	2005	30.4	7	28.4	12	44.5	21	25.2	8	29.5	23	29.3	7
TAN0601	2006	37.0	6	30.7	10	47.9	12	38.1	12	36.7	19	36.4	7
TAN0701	2007	32.4	7	23.0	10	43.3	12	27.2	13	35.9	20	29.2	7
TAN0801	2008	29.1	6	17.8	5	27.9	19	38.1	10	36.2	12	29.8	6
TAN0901	2009	44.7	10	22.4	22	54.3	12	39.3	16	84.8	18	43.8	9
TAN1001	2010	27.0	8	16.5	11	33.4	11	35.1	17	34.0	24	28.5	10
TAN1101	2011	21.4	9	23.4	15	27.2	14	12.6	23	15.8	17	18.5	9
TAN1201	2012	30.8	8	17.6	13	41.1	34	33.5	11	51.1	12	32.3	8
TAN1301	2013	28.8	7	15.5	15	45.9	12	27.3	13	31.7	13	26.3	7
TAN1401	2014	31.7	9	19.4	8	37.6	12	35.8	18	44.6	24	32.1	10
TAN1601	2016	41.7	8	27.8	14	40.1	13	41.6	15	68.7	16	41.8	8
TAN1801	2018	24.1	8	16.1	10	26.7	16	30.9	22	28.6	20	25.0	11

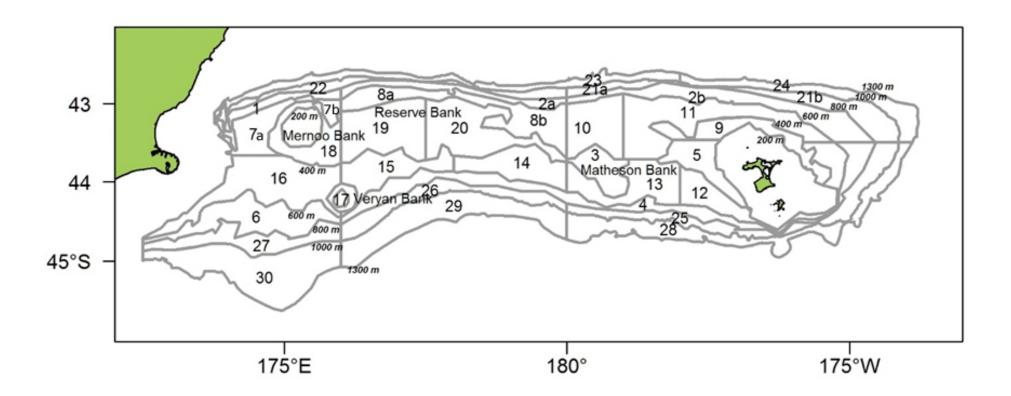


Figure 1: Chatham Rise trawl survey area showing stratum boundaries.

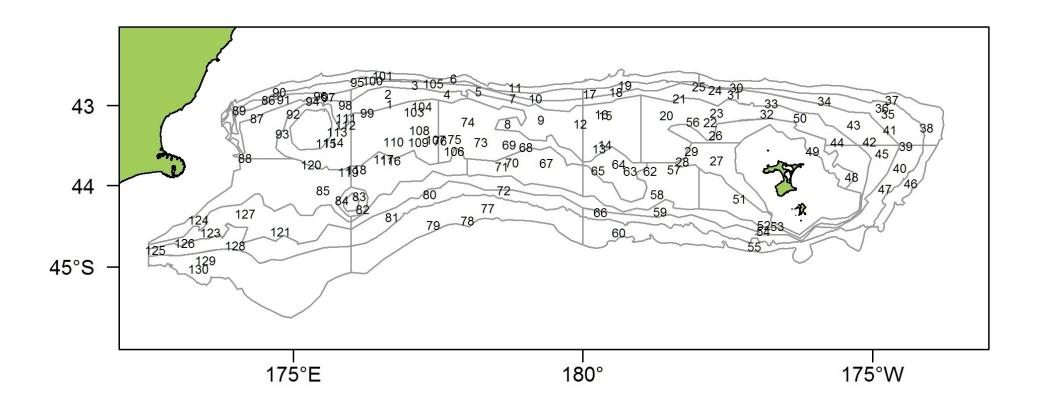


Figure 2: Trawl survey area showing positions of valid biomass stations (n = 127 stations) for TAN1801. In this and subsequent figures actual stratum boundaries are drawn for the deepwater strata.

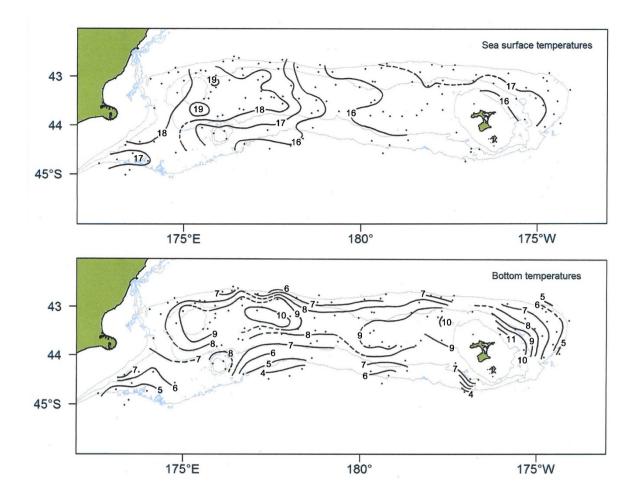


Figure 3: Positions of sea surface and bottom temperature recordings and approximate location of isotherms (°C) interpolated by eye for TAN1801. The temperatures shown are from the calibrated Seabird CTD recordings made during each tow.

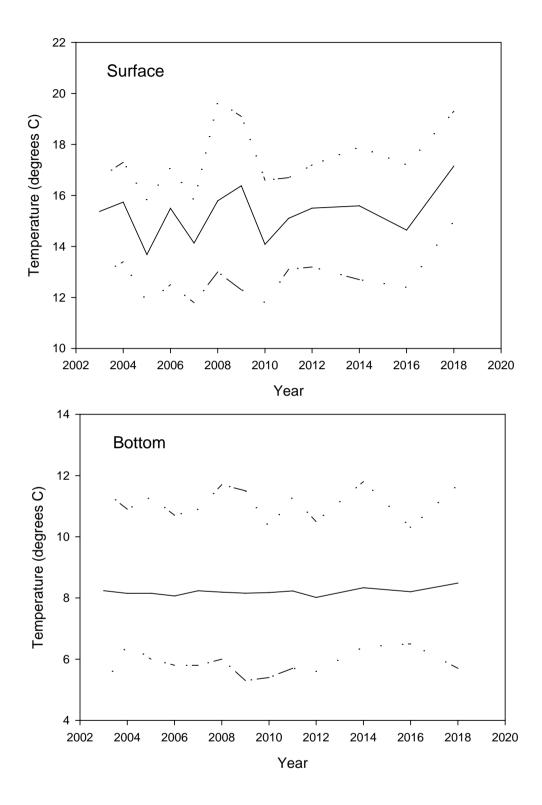
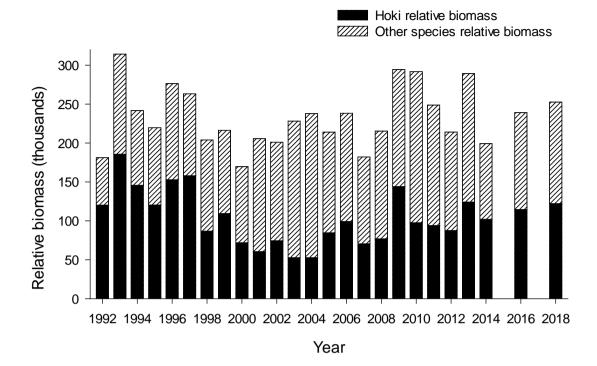



Figure 4: Time series of sea surface (upper panel) and bottom (lower panel) temperature recordings within the core (200–800 m) survey area from the calibrated Seabird CTD recordings made during each tow. Solid line is the mean temperature. Dashed lines are minimum and maximum values in each year.

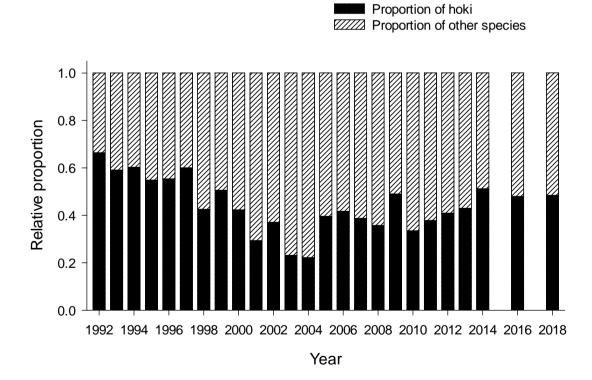


Figure 5: Relative biomass (top panel) and relative proportions of hoki and 30 other key species, as defined by Livingston et al (2002) and indicated in Table 4, (lower panel) from trawl surveys of the Chatham Rise, January 1992–2018 (core strata only).

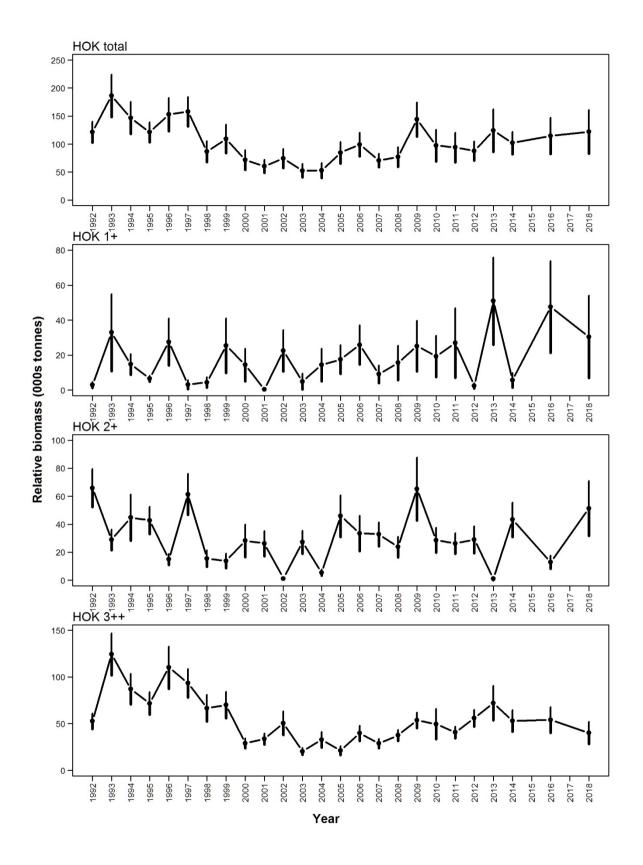


Figure 6a: Relative biomass estimates (thousands of tonnes) of hoki, hake, ling, and 8 other selected commercial species sampled by annual trawl surveys of the Chatham Rise, January 1992–2014, 2016, and 2018 (core strata only). Error bars show ± 2 standard errors.

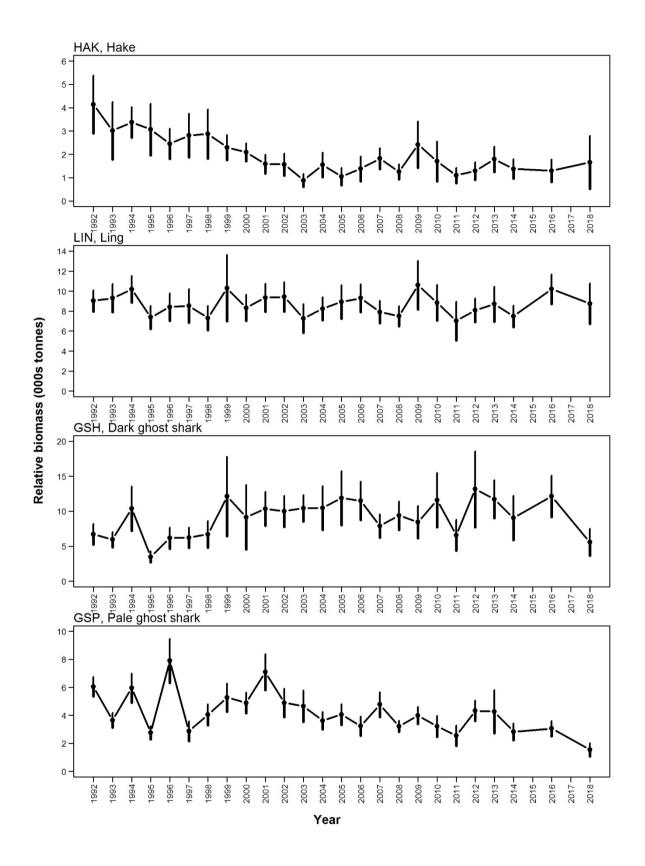


Figure 6a (continued)

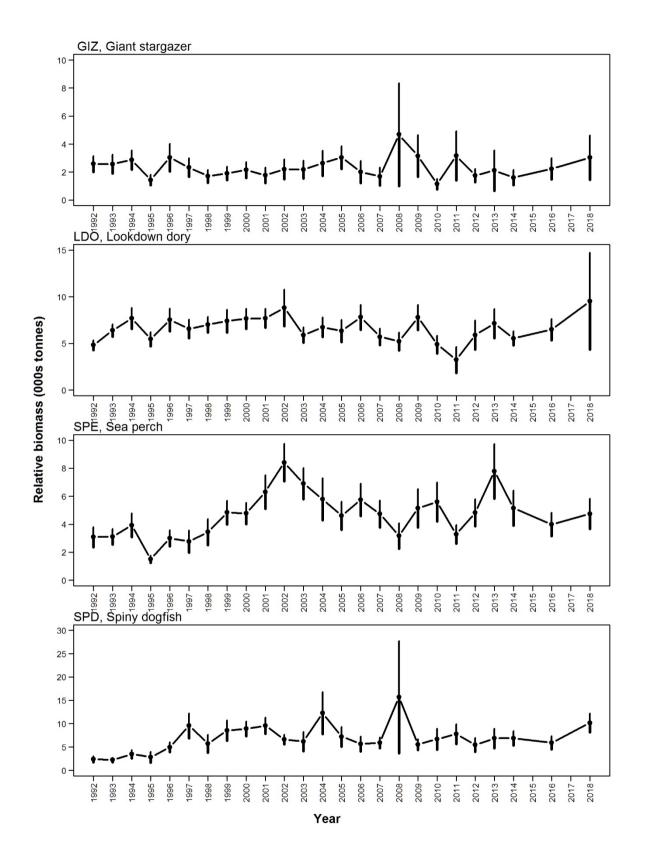


Figure 6a (continued)

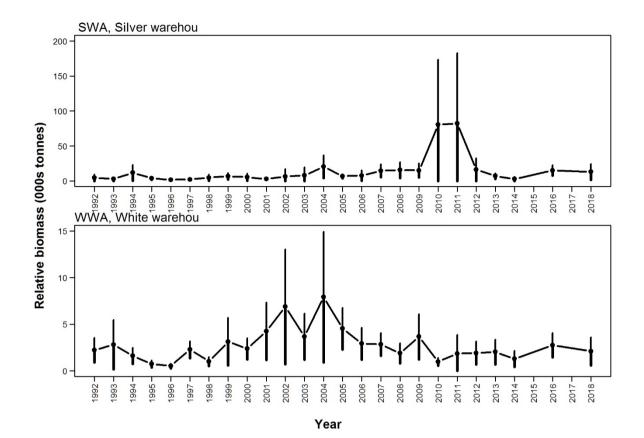


Figure 6a (continued)

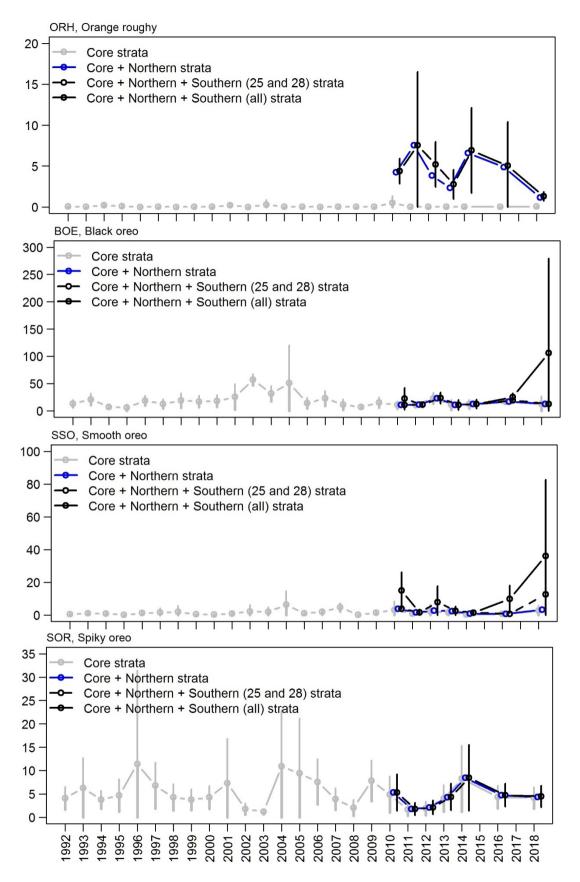


Figure 6b: Relative biomass estimates (thousands of tonnes) of orange roughy, black oreo, smooth oreo, and other selected deepwater species sampled by annual trawl surveys of the Chatham Rise, January 1992–2014, 2016, and 2018. Grey lines show fish from core (200–800 m) strata. Blue lines show fish from core strata plus the northern deep (800–1300 m) strata. Black solid lines show fish from core strata plus the northern deep (800–1300 m) strata, and black dashed lines show fish from core strata plus the northern and southern 25 and 28 deep strata (800–1300 m). Error bars show ± 2 standard errors.

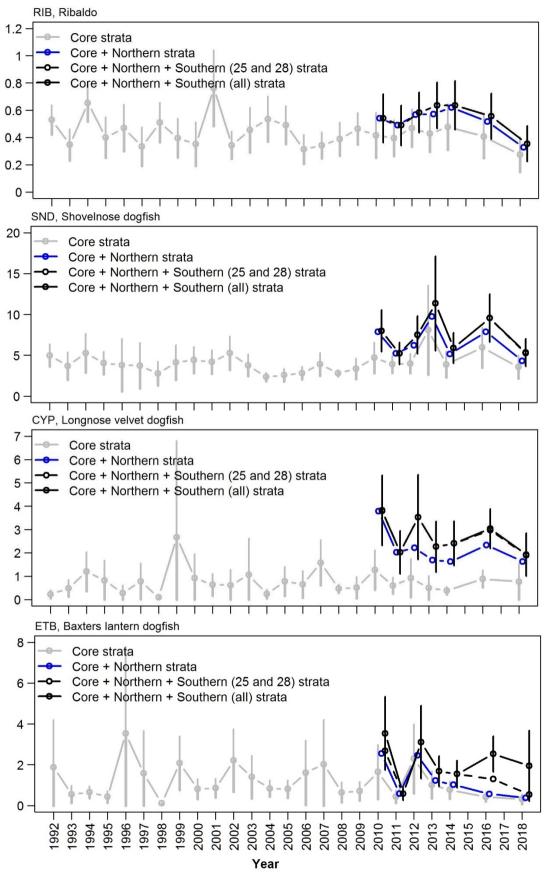


Figure 6b (continued)

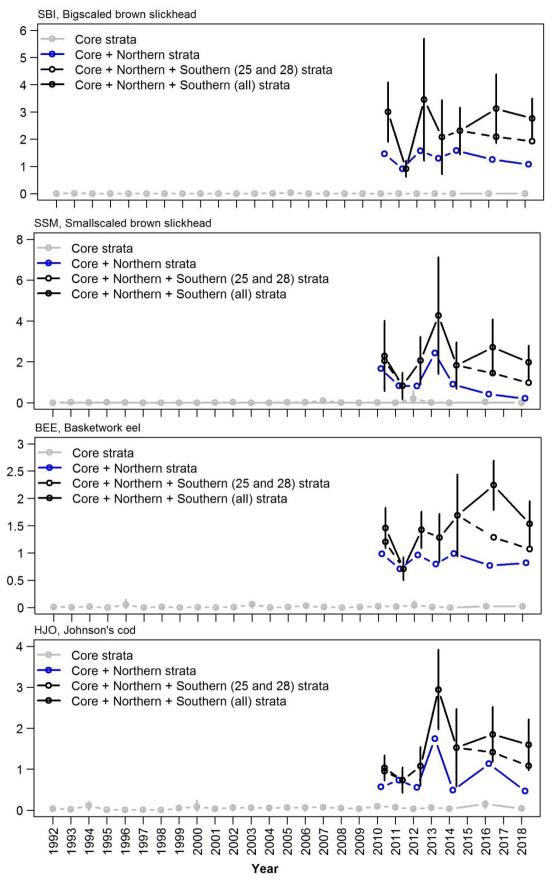


Figure 6b (continued)

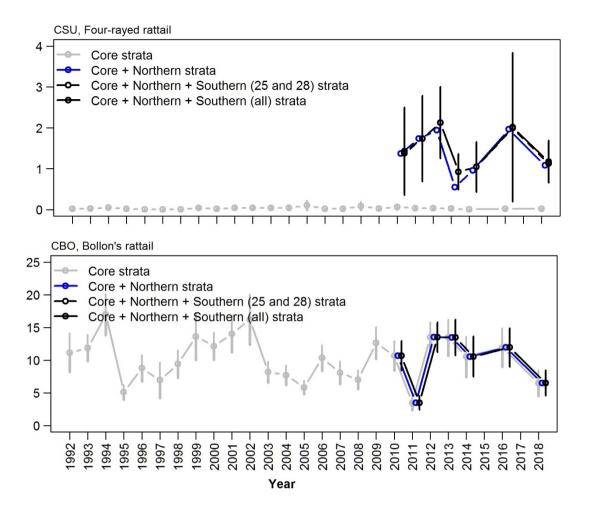


Figure 6b (continued)

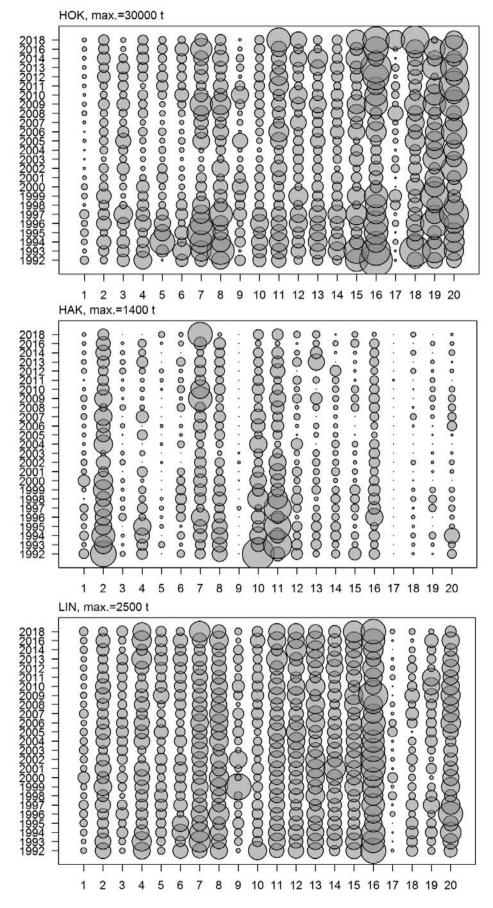
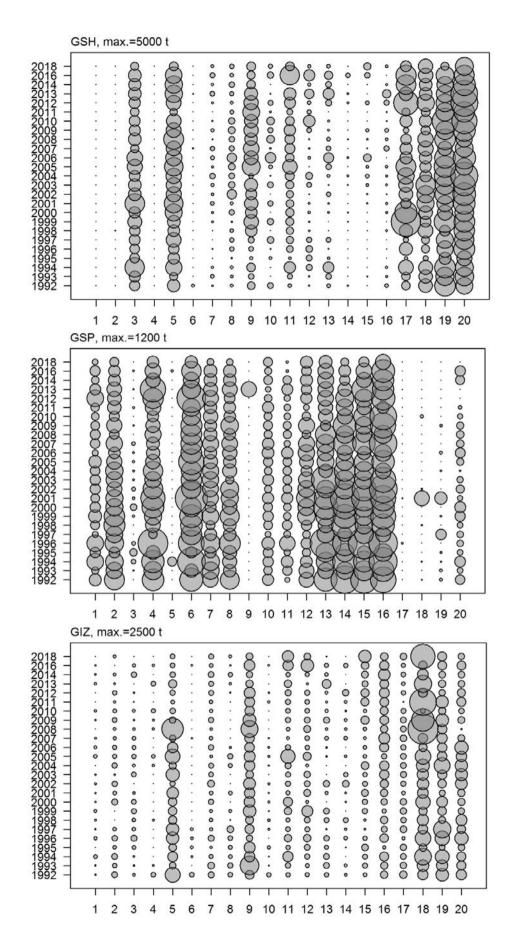



Figure 7a: Relative core (200–800 m) biomass estimates by stratum (1–20, x-axis) for hoki, and 8 other selected species sampled by annual trawl surveys of the Chatham Rise, January 1992–2014, 2016, and 2018.

Figure 7a (continued)

LDO, max.=3000 t

2018			00000.00.000.000.0000000000000000000000		000000000000000000000000000000000000000		0 • • 0 • (0000 • 000 • 000 • 0 • 0 • 0								0 • • • • • • • • • • • • • • • • • • •	000000000000000000000000000000000000000	000000000000000000000000000000000000000		
SP	1 2 E, ma	1 2 3 x.=30	4 000 t	56	7	8	9	10	11	12	13	1 14	1 15	16	17	1 18	19	20	
2018 6	••••••••••••••••••••••••••••••••••••••	о000000000000000000000000000000000000	• 000 • • 0 · 000 • • 000 • • 000 • 000 - 4	00000000000000000000000000000000000000	00000.00000.0000.00000 - 7		·Ooo•ooo•oOoOo•oOo•oooo - oO	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	•••0••••0•000000•000000 - 13	••••000•000000000000000000000000000000	000000000000000000000000000000000000000			000000000000000000000000000000000000000		20	
2018 - 2016 - 2014 - 2013 - 2011 - 2009 - 2006 - 2006 - 2006 - 2006 - 2006 - 2006 - 2006 - 2000 - 20	1 2	••••• _•••••••••••			0.0	· · · · 0000 · · 0 · 0 · 0 · 0 · · · ·	0.00.000000000.0.0	000000.0.0.0	00.0000.00.00.000.00.00.00.00.00.00.00.	•0•·••0••••000•000•••••• 1 12	00000	000.0.000.00000	000000000000000000000000000000000000000	00000	· · · · · · · · · · · · · · · · · · ·	0°000°000000000000000000000000000000000	0°00°0000000°000°000°00°00 - 19	000000000000000000000000000000000000000	

Figure 7a (continued)

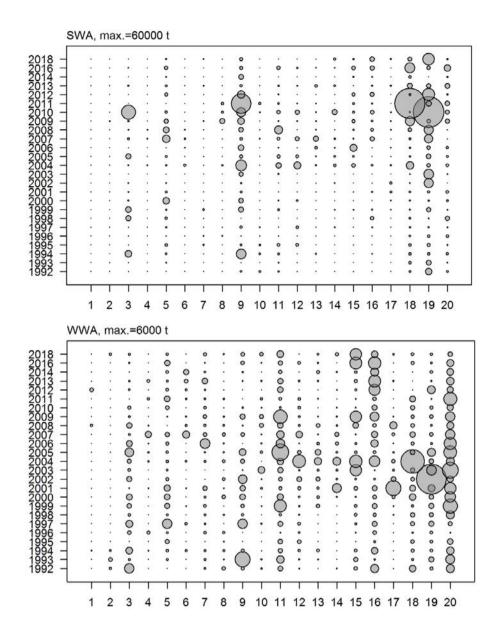


Figure 7a (continued)

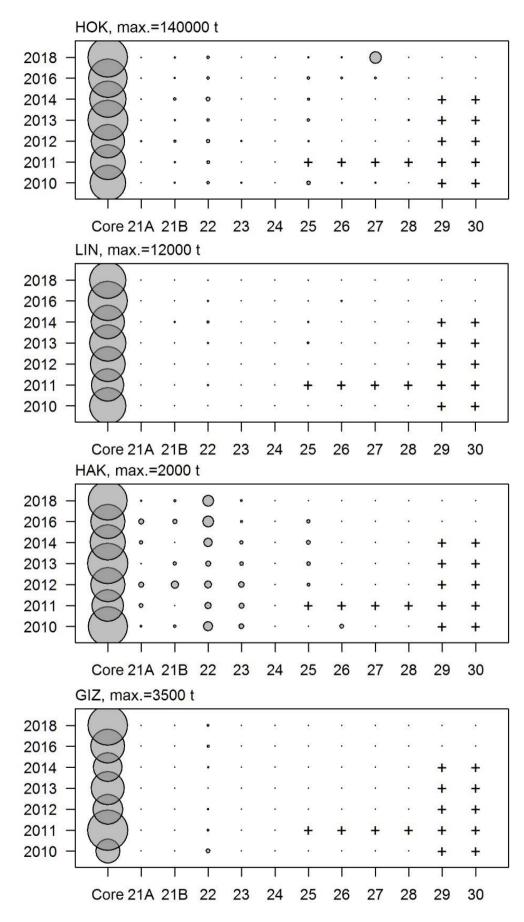
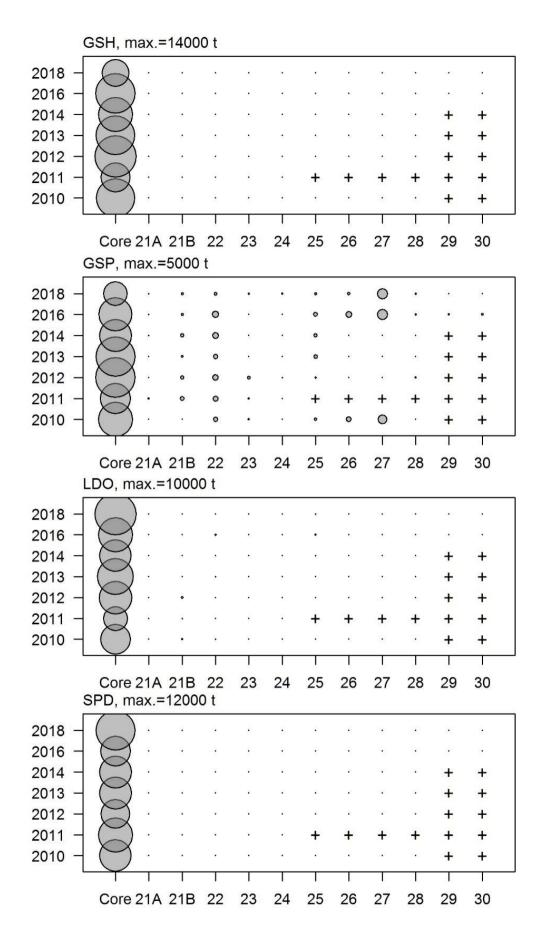



Figure 7b: Total core and deep (800–1300 m) relative biomass estimates by stratum for hoki and 8 other selected species sampled by annual trawl surveys of the Chatham Rise, January 2010–2014, and 2016. Cross indicates stratum not sampled. Cross indicates stratum not sampled.

Figure 7b (continued)

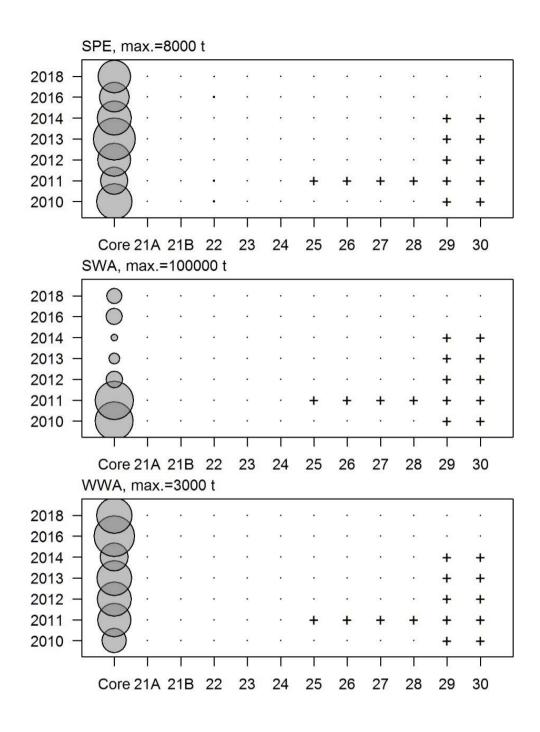


Figure 7b (continued)

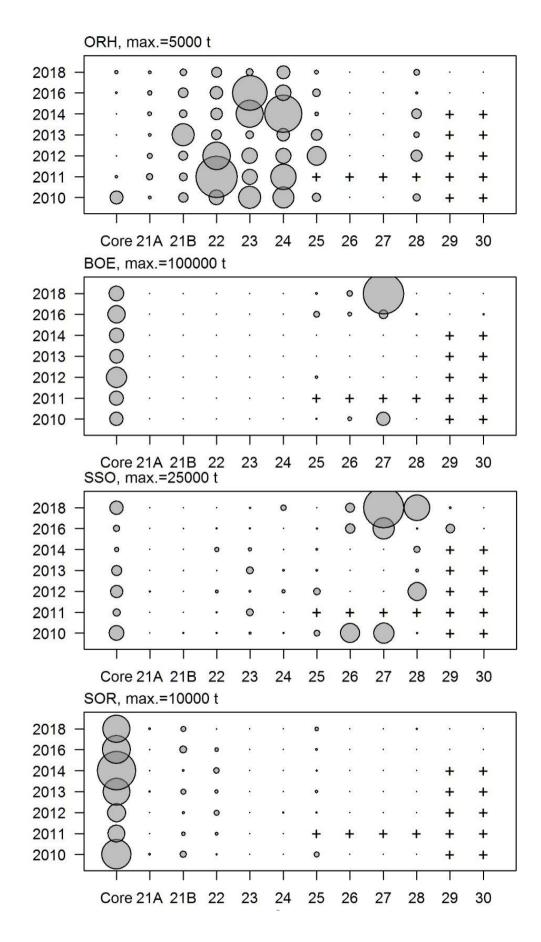


Figure 7c: Relative deep (800–1300 m) biomass estimates by strata for orange roughy, oreo species, and other selected deepwater species sampled by annual trawl surveys of the Chatham Rise, January 2010–2014, 2016, and 2018. Cross indicates stratum not sampled.

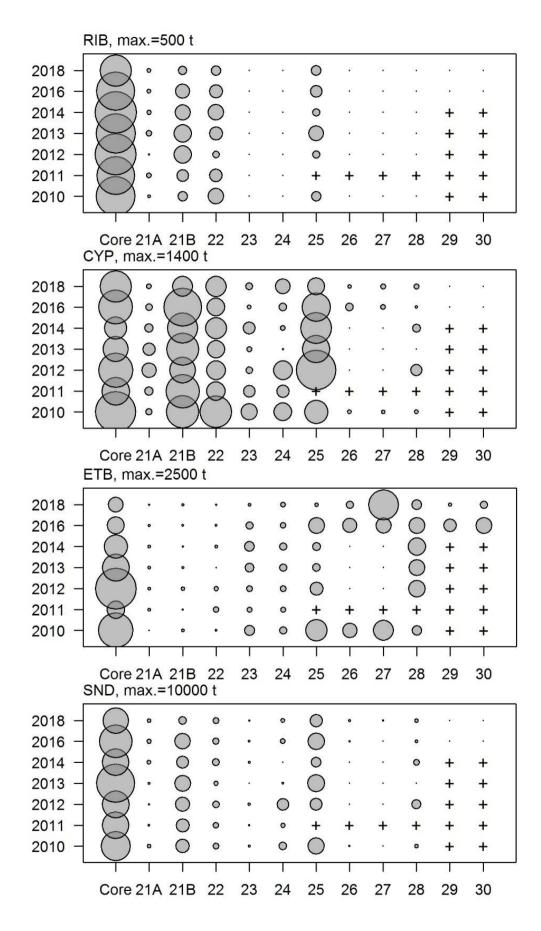


Figure 7c (continued)

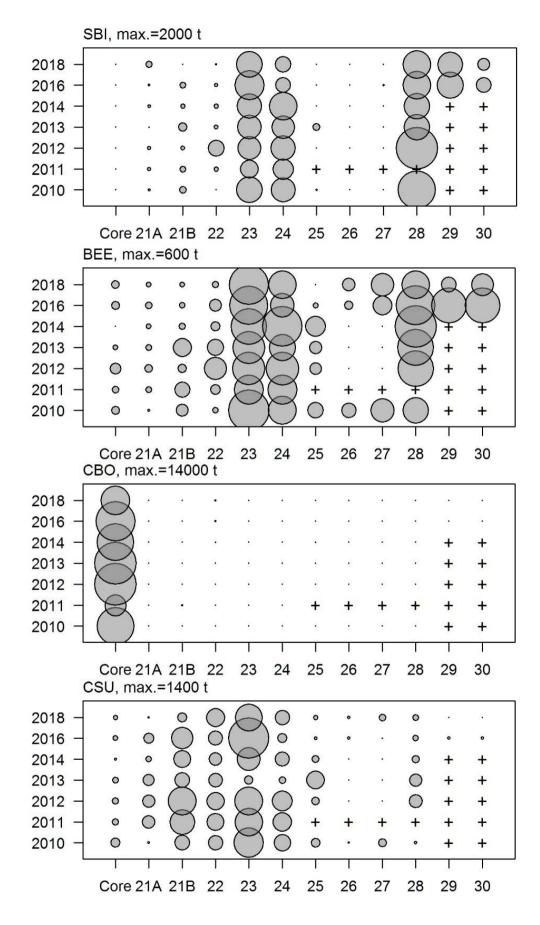


Figure 7c (continued)

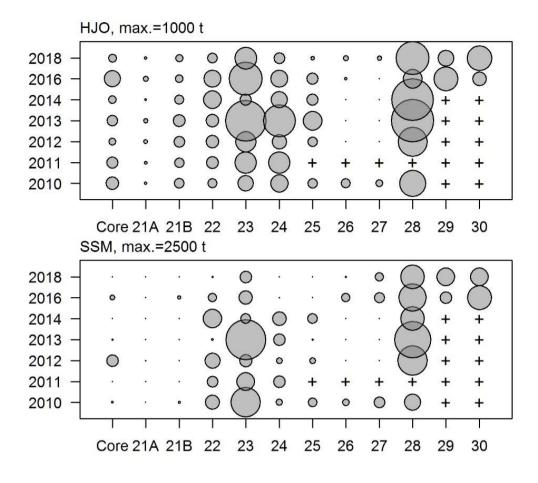


Figure 7c (continued)

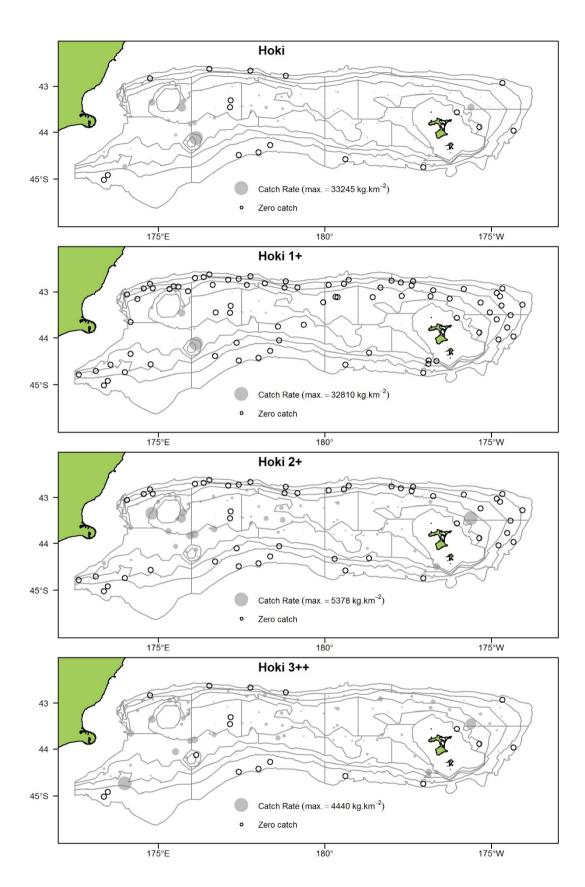


Figure 8: Hoki 1+, 2+, 3++ age class (year) and total catch distribution in 2018. Filled circle area is proportional to catch rate (kg km⁻²). Open circles are zero catch. Maximum catch rate (max.) is shown on each plot.

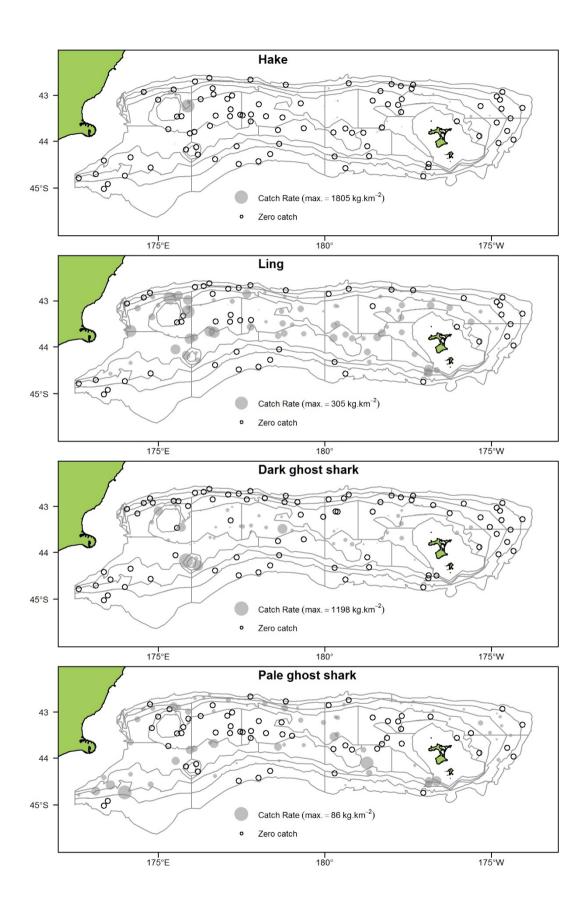
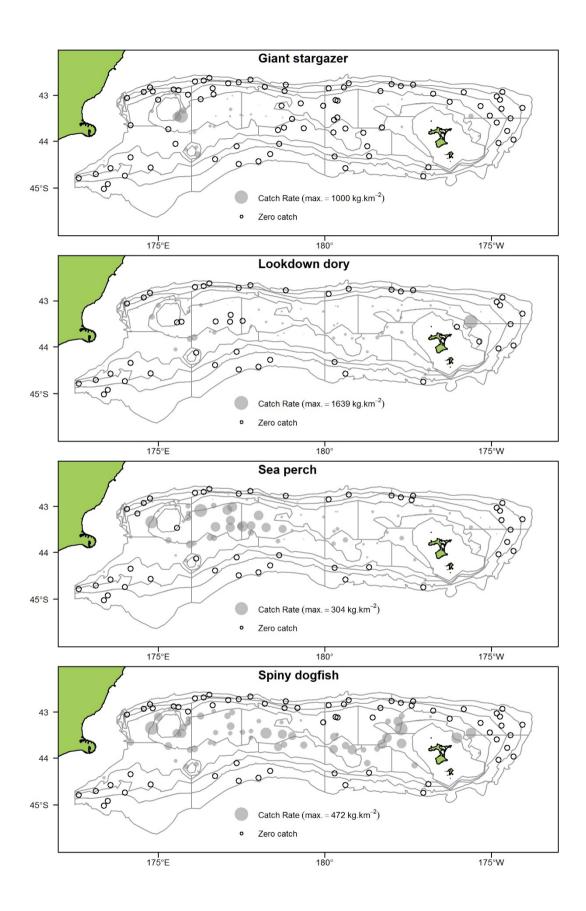
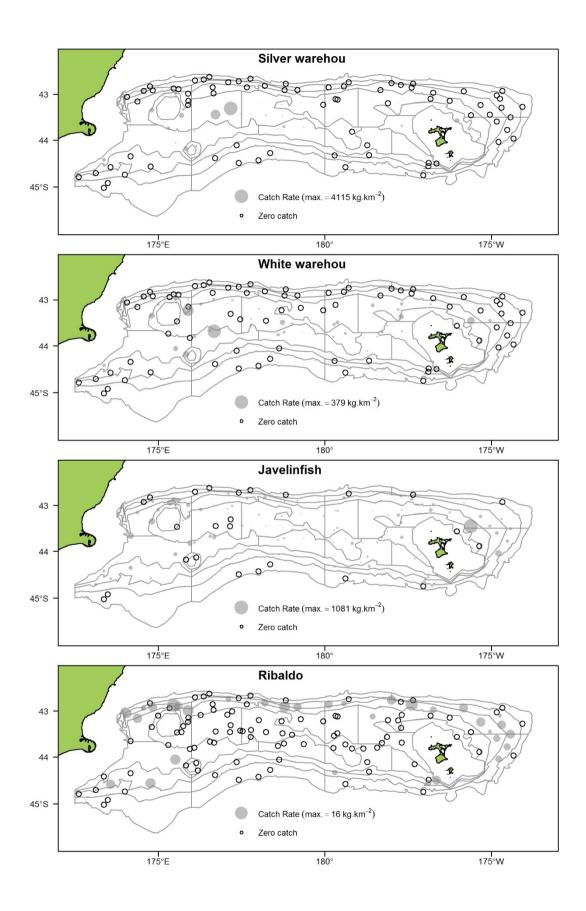




Figure 9: Catch rates (kg km⁻²) of selected core and deepwater commercial and bycatch species in 2018. Filled circle area is proportional to catch rate. Open circles are zero catch. max., maximum catch rate.

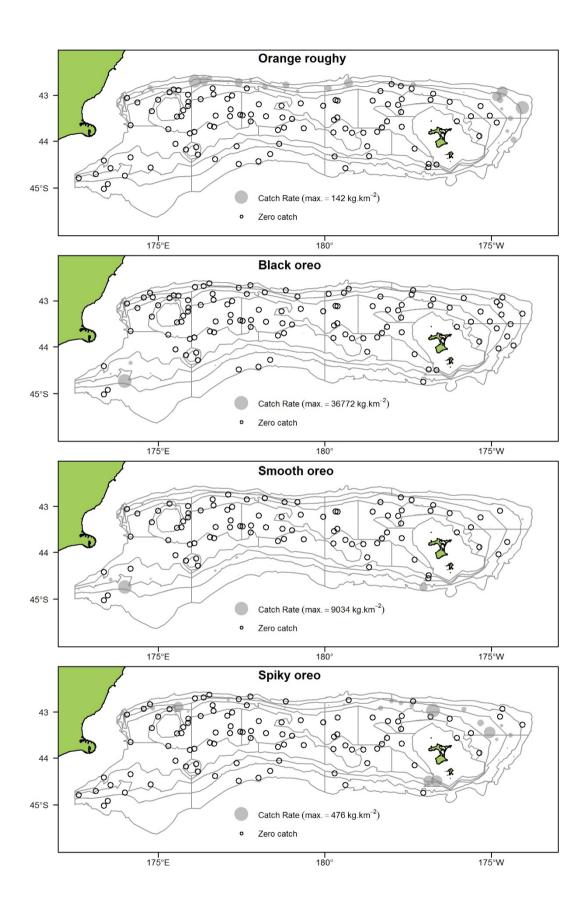


Figure 9 (continued)

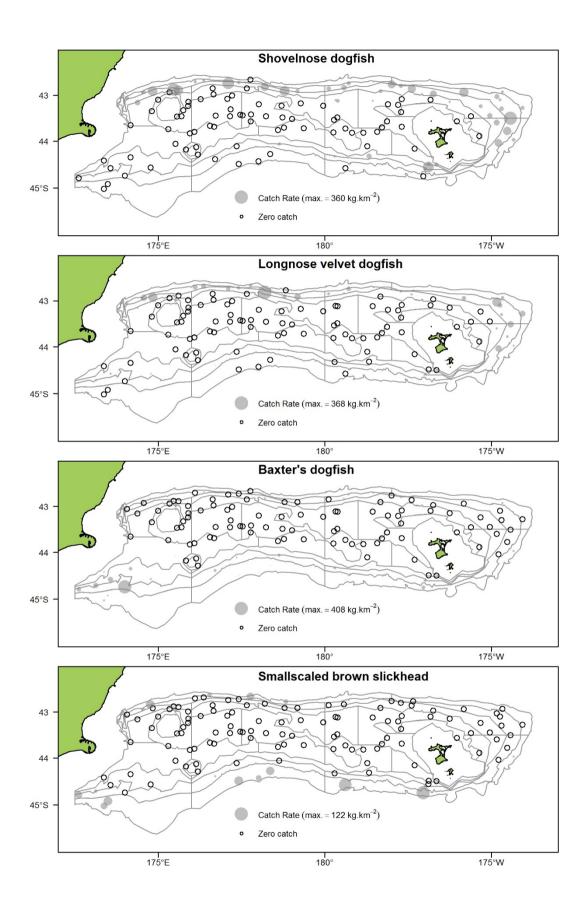


Figure 9 (continued)

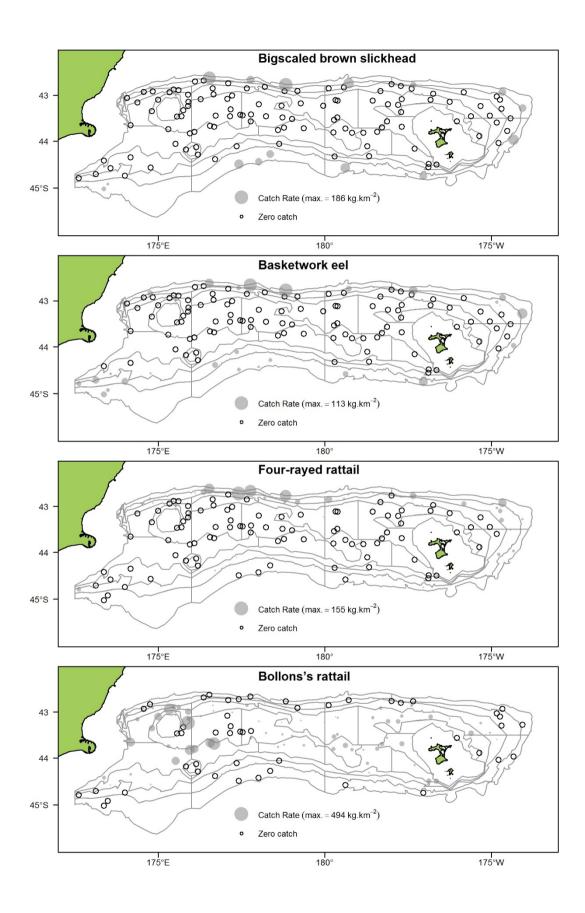

68 • Trawl Survey Chatham Rise TAN1801

Figure 9 (continued)

Figure 9 (continued)

Figure 9 (continued)

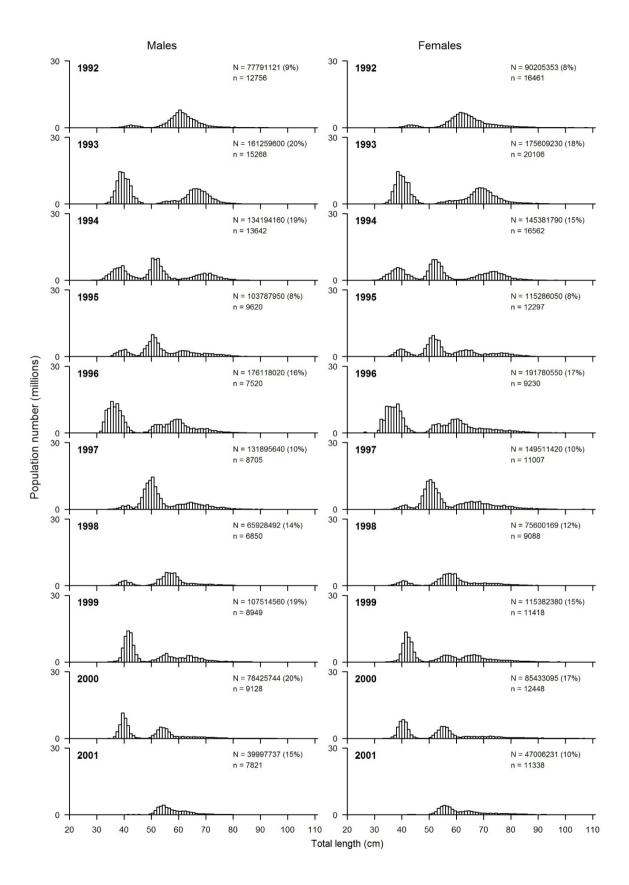


Figure 10: Estimated length frequency distributions of the male and female hoki population from *Tangaroa* surveys of the Chatham Rise, January 1992–2014, 2016, and 2018 for core strata. N, estimated population number of male hoki (left panel) and female hoki (right panel); CV (in parentheses), coefficient of variation; n., numbers of fish measured.

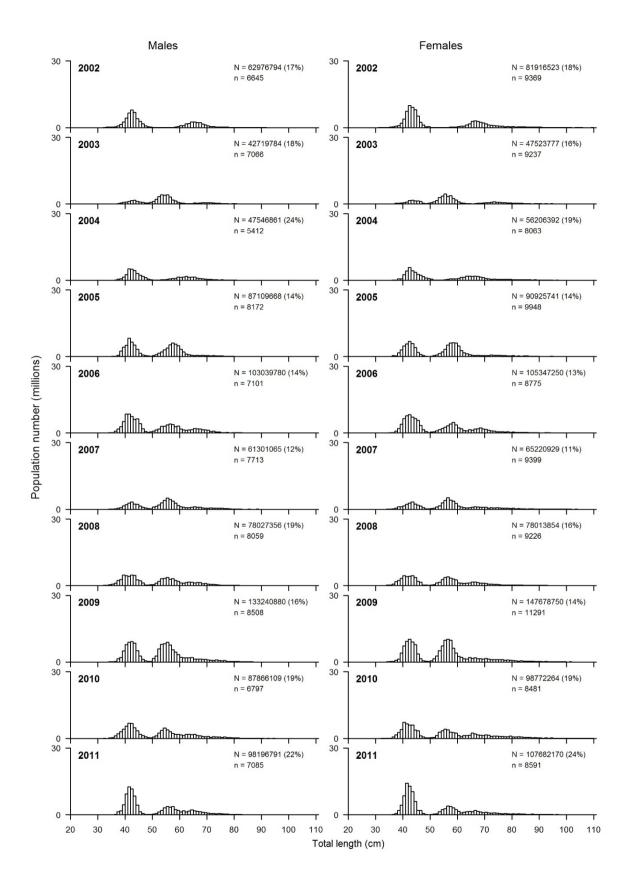


Figure 10 (continued)

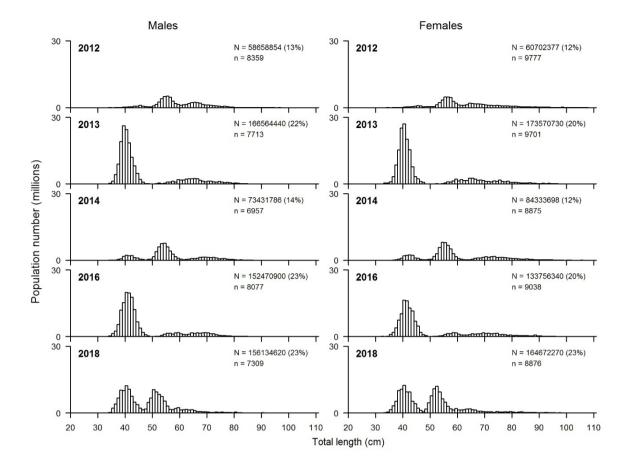


Figure 10 (continued)

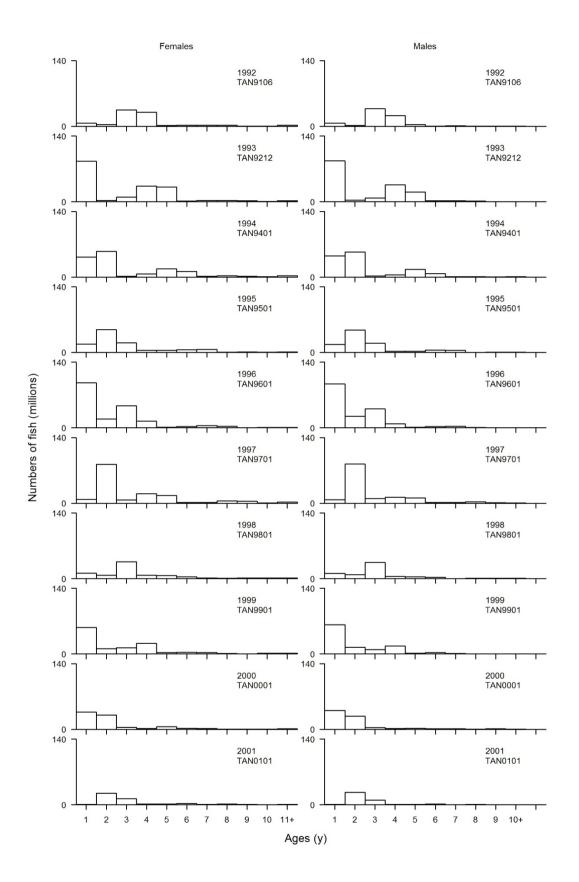


Figure 11: Estimated population numbers-at-age for hoki from *Tangaroa* surveys of the Chatham Rise, January, 1992–2014, 2016, and 2018. +, indicates plus group of combined ages.

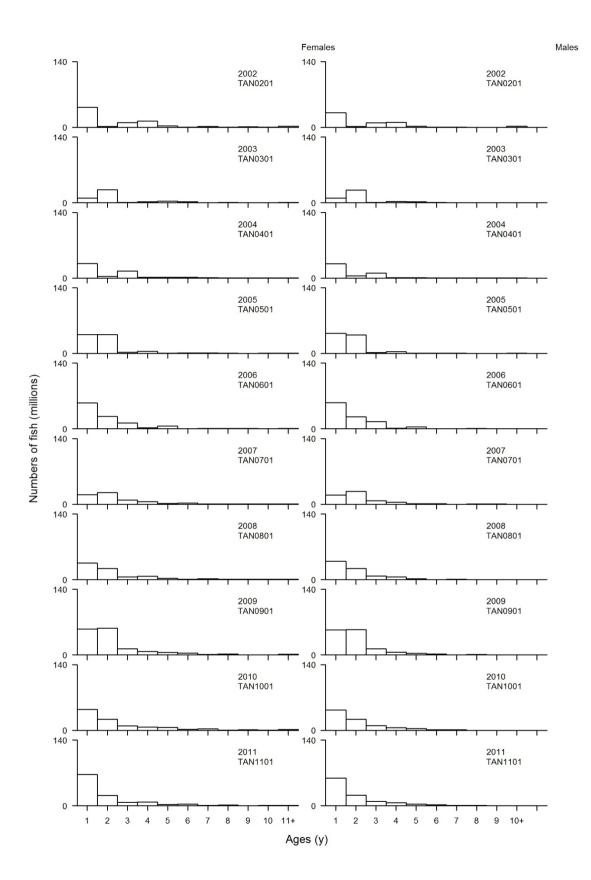
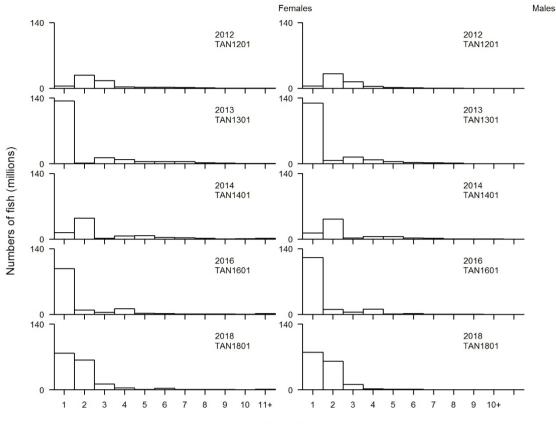



Figure 11 (continued)

Ages (y)

Figure 11 (continued)

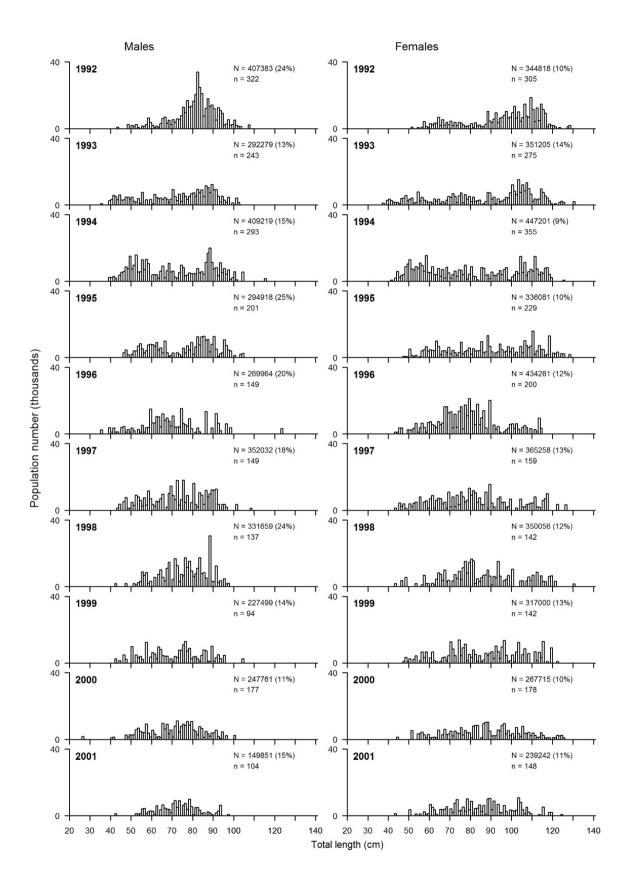


Figure 12: Estimated length frequency distributions of the male and female hake population from *Tangaroa* surveys of the Chatham Rise, January 1992–2014, 2016, and 2018 for core strata. N, estimated population number of male hake (left panel) and female hake (right panel); CV (in parentheses), coefficient of variation; *n*., numbers of fish measured.

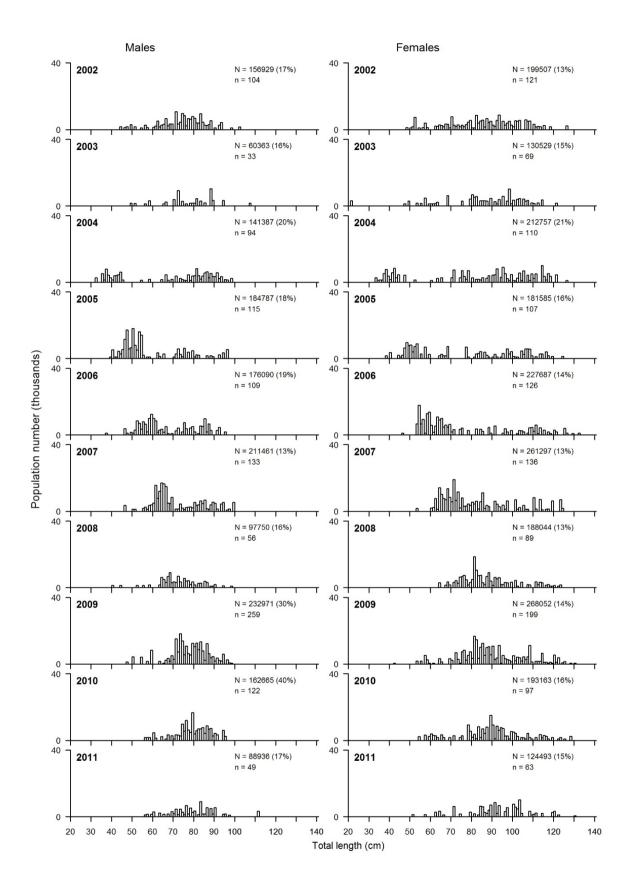


Figure 12 (continued)

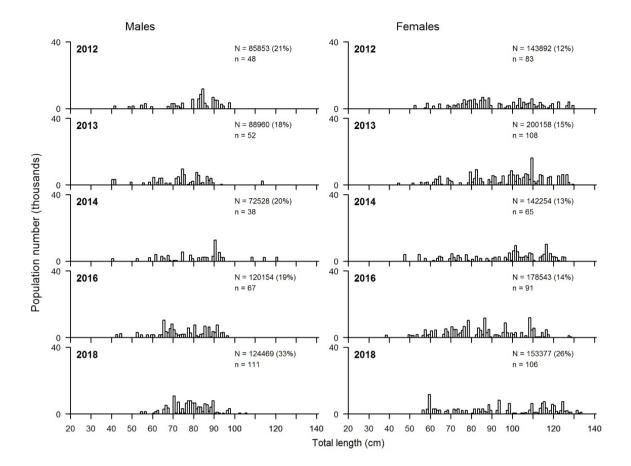


Figure 12 (continued)

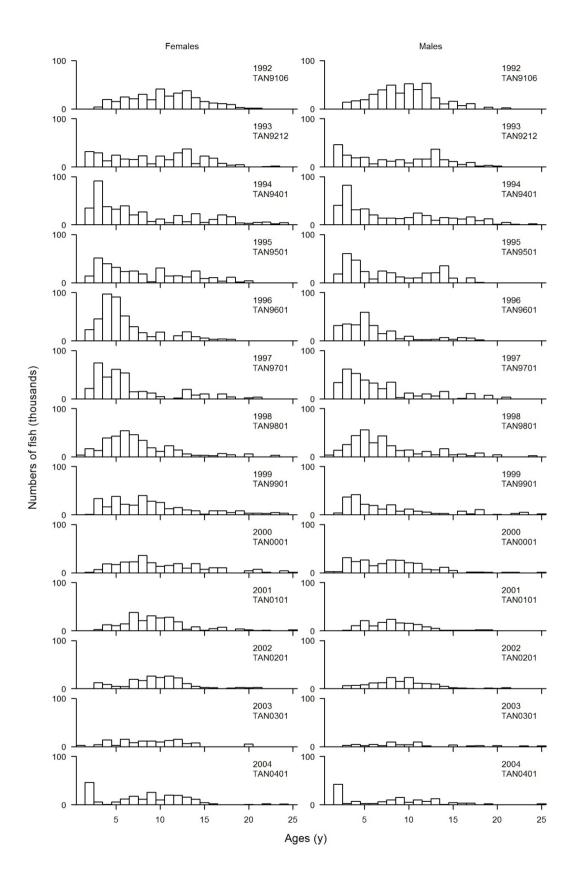


Figure 13: Estimated population numbers-at-age for male and female hake from *Tangaroa* surveys of the Chatham Rise, January, 1992–2014, 2016, and 2018.

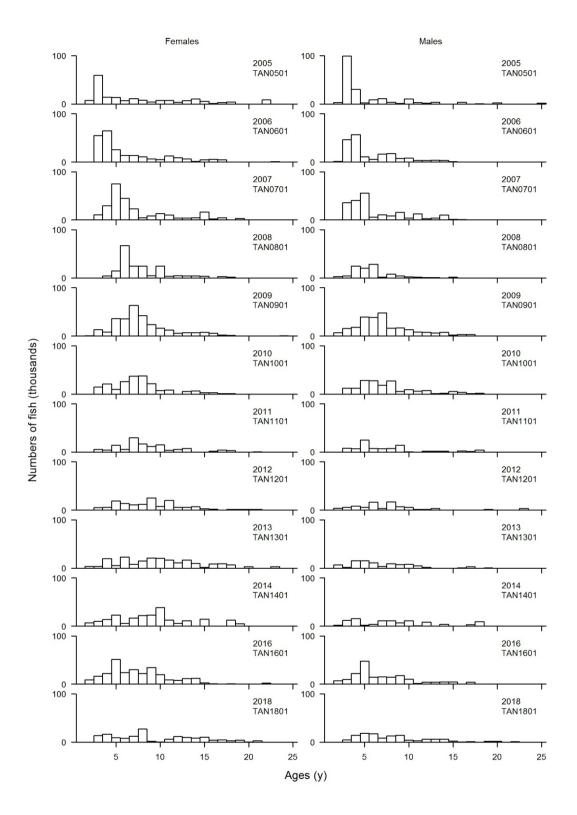


Figure 13 (continued)

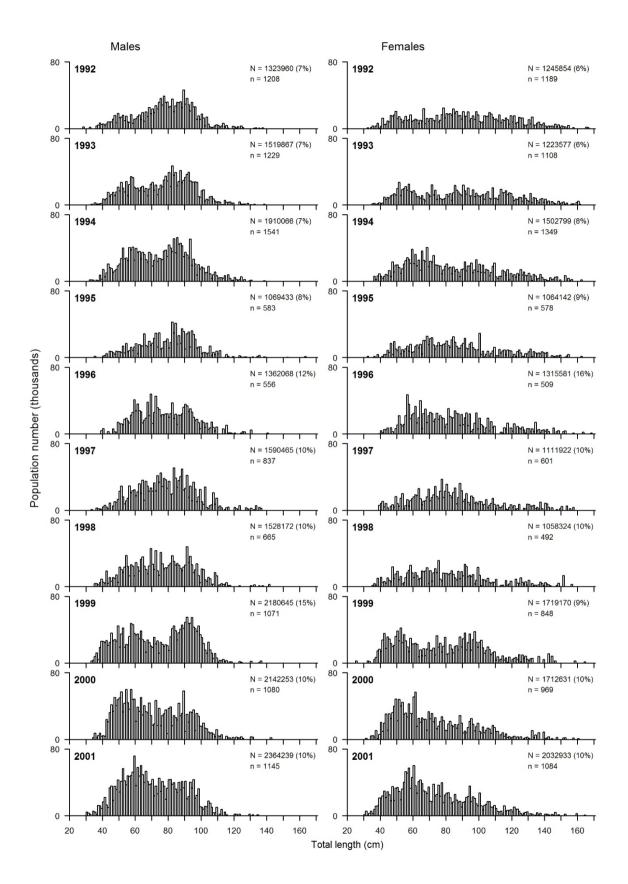


Figure 14: Estimated length frequency distributions of the ling population from *Tangaroa* surveys of the Chatham Rise, January 1992–2014, 2016, and 2018 for core strata. N, estimated population number of male ling (left panel) and female ling (right panel); CV (in parentheses), coefficient of variation; n., numbers of fish measured.

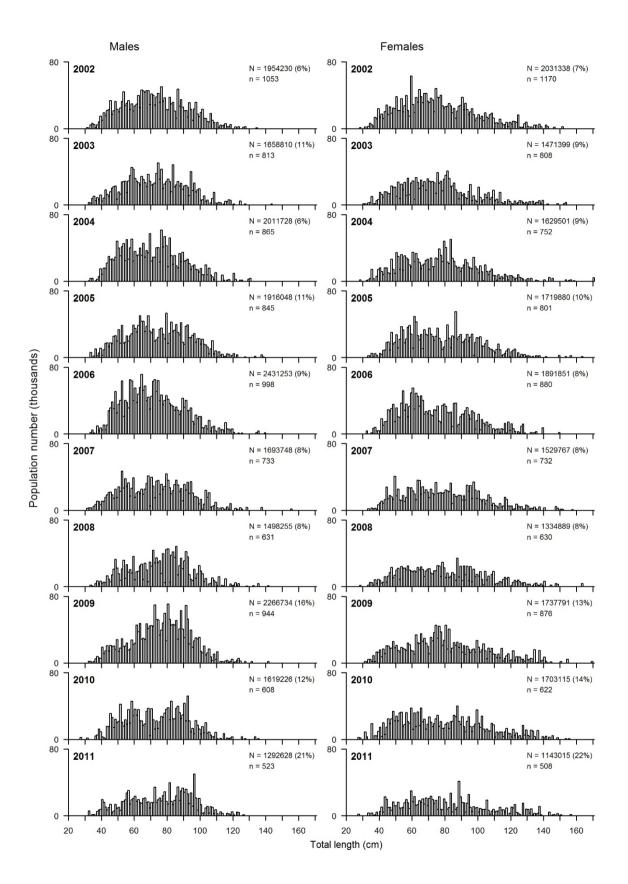
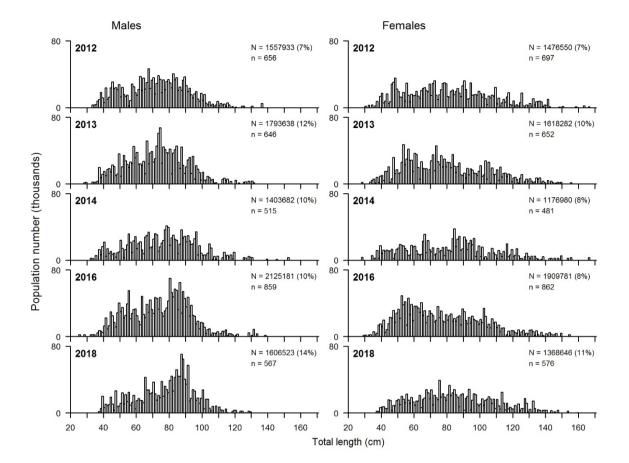



Figure 14 (continued)

Figure 14 (continued)

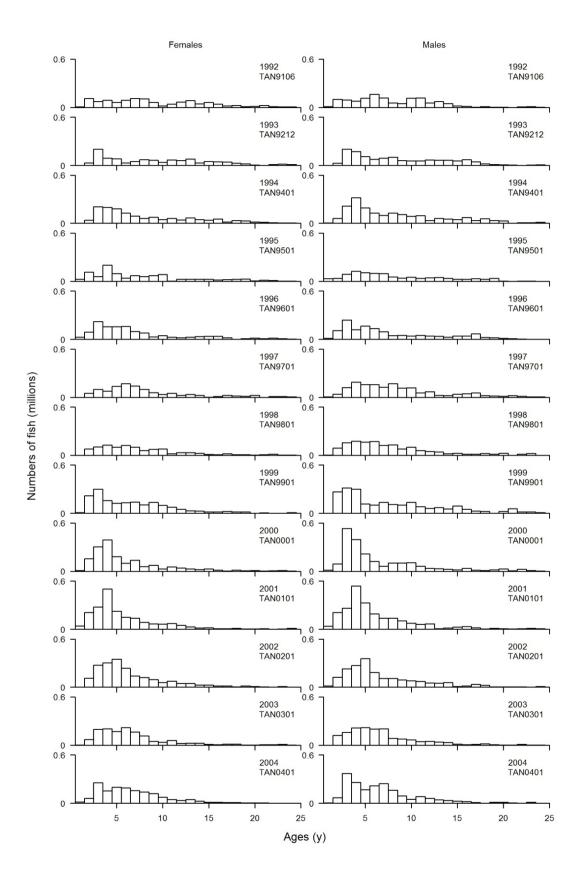


Figure 15: Estimated population numbers-at-age for male and female ling from *Tangaroa* surveys of the Chatham Rise, January, 1992–2014, 2016, and 2018.

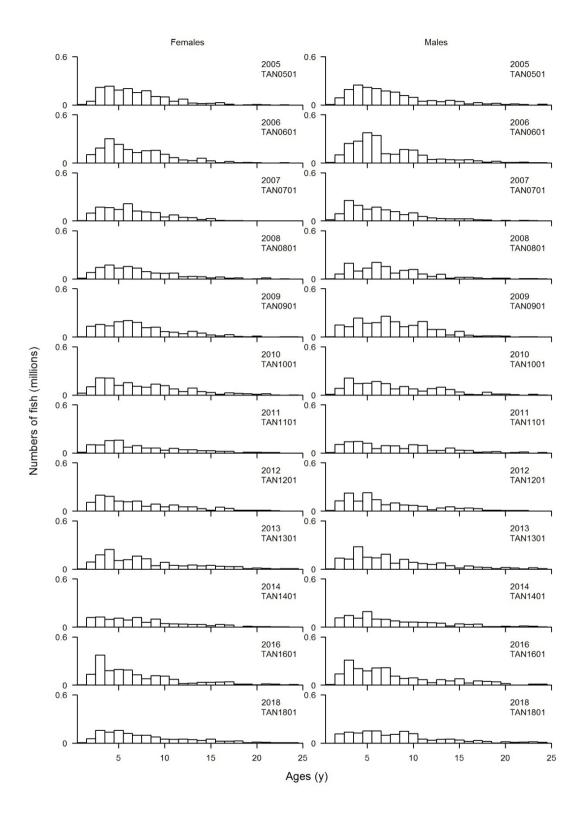


Figure 15 (continued)

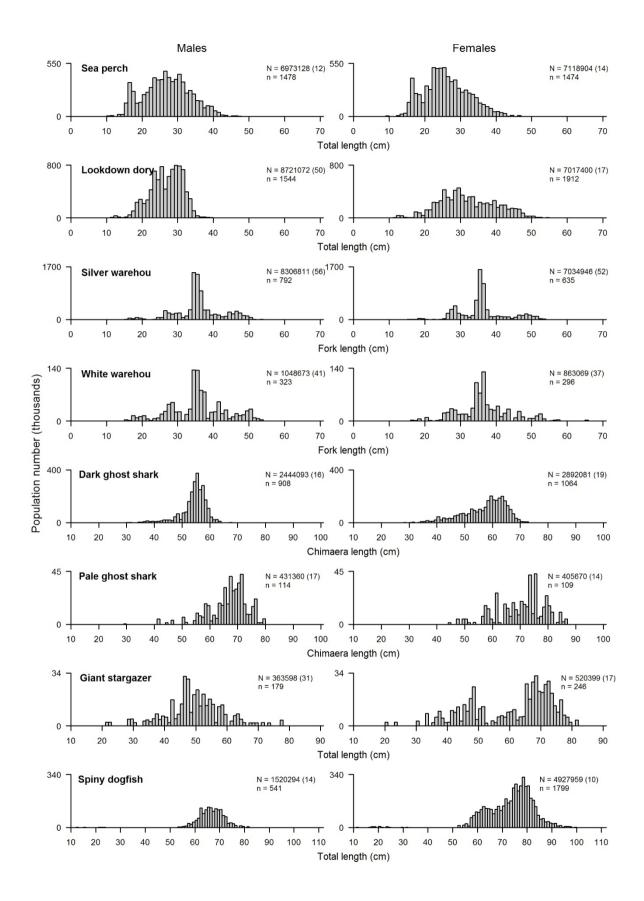


Figure 16a: Length frequency distributions of eight selected commercial species on the Chatham Rise 2018, scaled to population size by sex. N, estimated population number of male fish (left panel) and female fish (right panel); CV (in parentheses), coefficient of variation; n., numbers of fish measured.

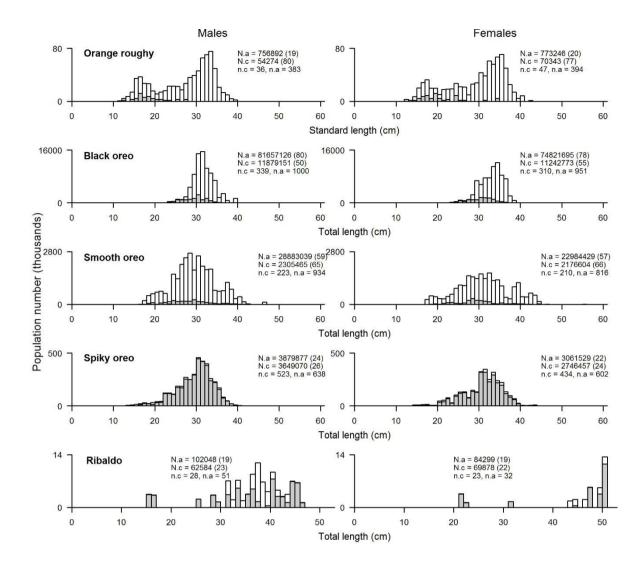


Figure 16b: Length frequency distributions of orange roughy, oreo species, and other selected deepwater species on the Chatham Rise 2018, scaled to population size by sex. N.a, estimated number of male fish (left panel) and female fish (right panel) from all (200–1300 m) strata; N.c, estimated number of male fish (left panel) and female fish (right panel) from core (200–800 m) strata; CV (in parentheses), coefficient of variation; n.c, number of fish measured from core strata; n.a, number of fish measured from all strata. White bars show fish from all strata. Black bars show fish from core strata.

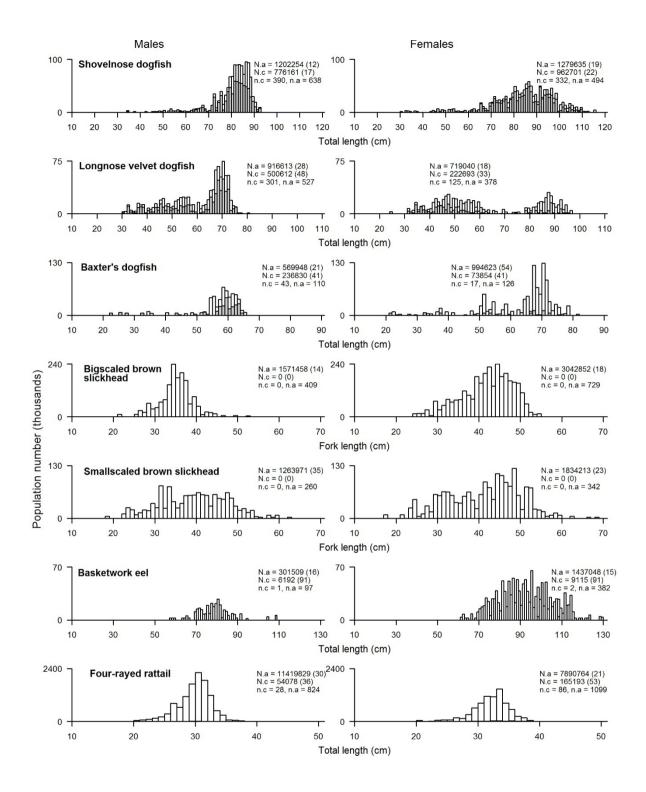


Figure 16b (continued)

Figure 17: Distribution of total acoustic backscatter through the water column (10 m deep to bottom) (open black circles) observed on the Chatham Rise during day trawls (upper panel) and night-time steams (lower panel) throughout the entire survey area in January 2018. Green circles indicate start positions of recordings. Measurement is the (sliced) area backscattering coefficient s_a (in m^2 km⁻²) represented in logarithmic scale (base 10). A value of 10 m² km⁻² is shown as a circle of 20 km radius.

Figure 18: Relationship between total trawl catch rate (all species combined) and bottom-referenced acoustic backscatter recorded during each tow on the Chatham Rise in 2018. Rho value is Spearman's rank correlation coefficient.

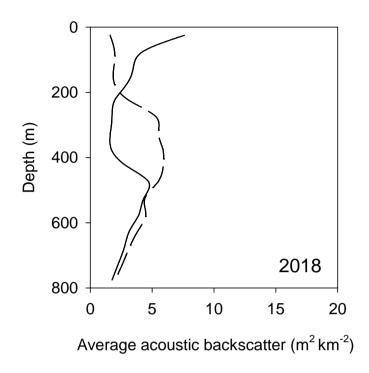


Figure 19: Vertical distribution of the average acoustic backscatter for the day (dashed lines) and at night (solid line) for the Chatham Rise survey in 2018.

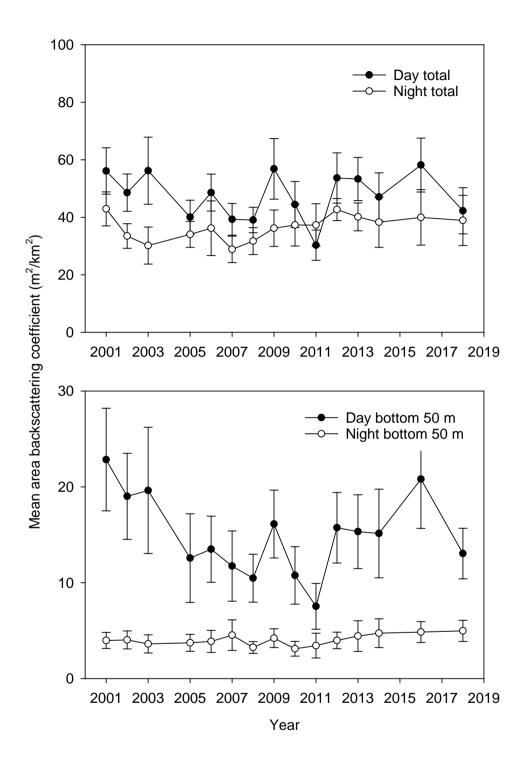


Figure 20: Comparison of relative acoustic abundance indices for the core Chatham Rise area based on (strata-averaged) mean areal backscatter. Error bars are ± 2 standard errors.

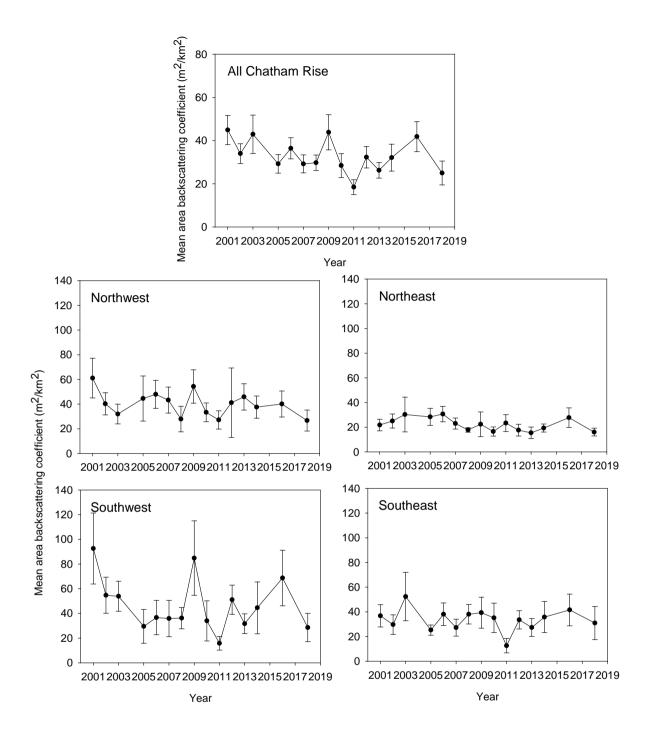


Figure 21: Relative acoustic abundance indices for mesopelagic fish on the Chatham Rise. Indices were derived by multiplying the total backscatter observed at each daytime trawl station by the estimated proportion of night-time backscatter in the same sub-area observed in the upper 200 m corrected for the estimated proportion in the surface deadzone. Panels show indices for the entire Chatham Rise and for four sub-areas. Error bars are ± 2 standard errors.

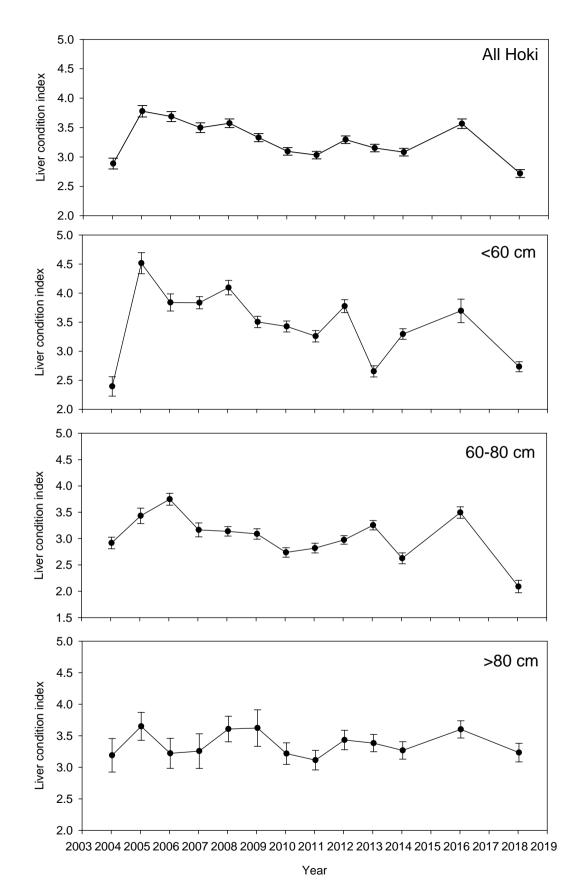


Figure 22: Time-series of hoki liver condition indices on the Chatham Rise from 2004–18. Data are plotted for all hoki, then three different size classes (<60 cm, 60–80 cm, and >80 cm). Error bars show ± 2 standard errors.

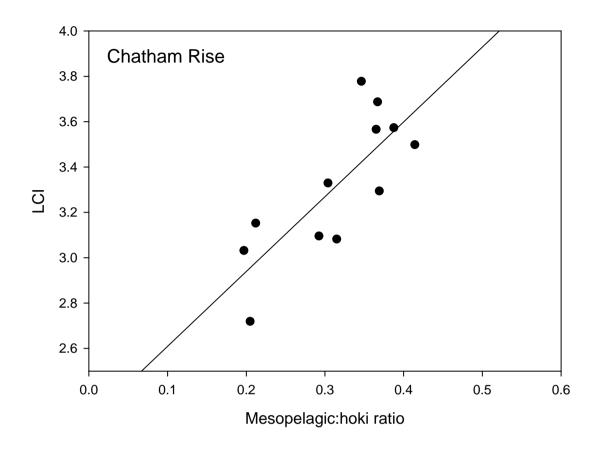


Figure 23: Correlation between hoki liver condition (LCI) and the ratio between the acoustic estimate of mesopelagic fish abundance divided by the trawl estimate of hoki abundance (food per fish) for Chatham Rise surveys 2004–2018.

Appendix 1: Individual station data for all stations conducted during the survey (TAN1801). Stn., station number. Type; P1, phase 1 trawl survey biomass tow; P2, phase 2 trawl survey biomass tow. Strat., Stratum number; *, foul trawl stations. Time is NZST, Latitude (S), and Longitude as degrees and minutes. Dist., distance towed.

						Start tow		Gear de	pth (m)	Dist.		Cato	ch (kg)
Stn.	Туре	Strat.	Date	Time	Latitude	Longitude	E/W	min.	max.	n.mile	hoki	hake	ling
1	P1	8A	6-Jan-18	530	42 59.07	176 39.78	Е	407	408	2.11	206.6	0	14.0
2	P1	8A	7-Jan-18	516	42 51.29	176 38.55	Ē	448	489	2.99	11.7	0	0
3	P1	2A	7-Jan-18	827	42 44.31	177 06.10	Ē	774	790	2.97	141.0	1.5	0
4	P1	8A	7-Jan-18	1229	42 50.77	177 39.82	Ē	506	524	2.70	333.7	2.0	85.1
5	P1	2A	7-Jan-18	1615	42 49.09	178 12.27	E	756	768	2.92	246.2	3.9	13.8
6	P1	23	7-Jan-18	2318	42 39.59	177 45.98	E	1188	1195	2.92	0	0	0
7	P1	2A	8-Jan-18	556	42 54.69	178 47.19	E	745	756	3.02	188.9	7.5	17.4
8	P1	8B	8-Jan-18	1028	43 14.01	178 42.22	E	422	422	2.90	532.5	3.2	31.9
9	P1	8B	8-Jan-18	1410	43 10.93	179 16.60	Ē	442	446	2.90	209.1	0	50.9
10	P1	22	8-Jan-18	1744	42 54.38	179 10.82	Ē	802	818	3.00	112.7	9.0	5.7
11	P1	23	8-Jan-18	2151	42 46.38	178 50.08	E	1240	1263	2.96	0	0	0
12	P1	8B	9-Jan-18	510	43 13.73	179 57.15	E	488	492	3.02	121.0	4.3	7.0
12	P1	10	9-Jan-18	823	43 32.30	179 42.90	W	416	424	2.99	206.8	2.9	50.1
13	P1	10	9-Jan-18	1034	43 29.26	179 37.22	w	433	455	2.95	254.3	25.6	37.2
14	P1	10	9-Jan-18	1406	43 07.01	179 36.39	w	525	528	2.90	469.4	25.0 27.5	11.4
15	P1	10	9-Jan-18	1616	43 06.39	179 40.73	w	520	526	3.01	150.1	4.5	20.3
10	P1	22	9-Jan-18 9-Jan-18	2035	42 51.21	179 40.73 179 52.91	W	893	900	2.99	32.6	37.8	20.3
17	P1	21A	9-Jan-18 10-Jan-18	2033 54	42 49.66	179 32.91 179 25.97	W	816	822	2.99	65.0	4.0	7.9
18 19	P1	21A 21A	10-Jan-18	331	42 49.00 42 44.61	179 23.97 179 16.64	W	939	822 949	3.00	3.1	4.0 0	7.9 0
20	P1	21A 11	10-Jan-18 10-Jan-18	816	42 44.01 43 07.10	179 10.04 178 33.59	W	513	520	3.00	129.1	0	0
20 21	P1	11	10-Jan-18 10-Jan-18	1058	42 54.83	178 33.39 178 19.88	W	567	520 577	2.90	498.8		20.1
				1521				418	433	2.90 3.04		0	
22	P1	11	10-Jan-18		43 12.85	177 48.06	W		455 454	3.04	82.4 91.0	0	17.1
23	P1	11 21B	10-Jan-18	1731	43 05.55	177 41.36	W	451 872	434 875			0	40.3
24 25	P1		10-Jan-18	2212	42 48.27	177 43.16	W			3.01	29.0	0	2.2
25 26	P1 P1	21A	11-Jan-18	145 733	42 45.41	178 00.30	W	865 255	893 379	2.92 2.99	33.8	0	0
26 27		9	11-Jan-18		43 22.37	177 42.88	W	355 392	403		81.5	0	41.5
27	P1	5	11-Jan-18	1151	43 41.53	177 41.70	W			2.88	167.7	8.6	35.5
28 20	P1	5	11-Jan-18	1539	43 42.07	178 16.83	W	369 272	374	3.00	384.9	0	66.4
29 20	P1	5	11-Jan-18	1739	43 33.91	178 08.00	W	373	380	2.98	160.3	16.2	17.5
30	P1	24 210	12-Jan-18	102	42 45.98	177 20.86	W	1037	1043	2.89	31.2	0	0
31	P1	2B	12-Jan-18	519	42 51.52	177 23.50	W	750	756 482	2.99	119.6	0	3.1
32 33	P1 P1	11 2B	12-Jan-18 12-Jan-18	924	43 06.13	176 49.53	W	450	482 626	3.00	549.1	11.1 27.8	63.8 16.8
				1149	42 58.15	176 44.80	W	617 820		2.94	336.5		
34 25	P1	21B	12-Jan-18	1738	42 56.39	175 50.05	W	830	835	2.99	35.0	4.0	0
35 26	P1	21B	12-Jan-18	2356	43 05.93	174 44.30	W	880	882	2.99	27.8	0	0
36 27	P1	21B	13-Jan-18	321	43 01.85	174 50.26	W	900 1067	906	3.01	11.7	0	0
37	P1	24	13-Jan-18	641	42 55.62	174 40.37	W	1067	1087	2.99	0	0	0
38	P1	24 25	13-Jan-18	1217	43 16.94	174 04.00	W	1044	1061	2.94	6.8	0	0
39 40	P1	25 25	13-Jan-18	1610	43 30.64	174 25.75	W	827	837	3.00	26.2	0	0
40	P1	25 21D	13-Jan-18	1944	43 47.02	174 31.67	W	832 825	839	2.97	17.4	0	0
41	P1	21B	14-Jan-18	100	43 18.02	174 42.04	W	835	841	2.93	44.4	0	0
42	P1	2B	14-Jan-18	505	43 26.98	175 03.24	W	628	636	2.97	123.5	20.2	9.8
43	P1 D1	2B	14-Jan-18	802	43 14.30	175 19.79	W	692 472	697 500	3.00	171.2	0 26 1	18.4 24.7
44 45	P1	11	14-Jan-18	1110	43 27.41	175 36.42	W	472	500 704	2.10	3644.4	36.1	34.7
45 46	P1	4	14-Jan-18	1719	43 35.92	174 50.46	W	689	704	3.00	65.1	0	16.7
46 47	P1	28 25	14-Jan-18	2217	43 58.09	174 20.40	W	1158	1163	3.09	0	0	0
47 48	P1	25	15-Jan-18	202	44 02.66	174 47.68	W	844	854 246	2.89	36.1	0	5.2
48 40	P1	9	15-Jan-18	608	43 53.62	175 21.64	W	231	246 225	3.02	0	0	0
49 50	P1 P2	9	15-Jan-18	1152	43 33.91	176 02.43	W	218	225 522	2.12	0	0	0
50	P2	11	15-Jan-18	1552	43 08.92	176 14.83	W	516	523	3.01	193.9	11.9	45.7

Sun. Type Strat. Date Time Latitude Longitude EW min. max. n.mkle boki hake ing 51 P1 12 16Jan-18 530 44.09.80 177 17.89 W 404 415 3.00 353.1 14.7 41.7 52 P1 21 16Jan-18 827 43.02 175 0.22 W 537 584 2.98 193.8 4.1 44.2 54 P1 4 165 44.51 177 02.12 W 1160 1200 2.99 0							Start tow		Gear de	pth (m)	Dist.		Cat	ch (kg)
12 P1 12 16 Jan-18 516 44 29.48 176 30.29 W 537 584 2.98 193.88 4.1 44.2 54 P1 4 16 Jan-18 122 44 33.44 175 32.2 W 160 120 2.99 10 0 55 P1 28 16 Jan-18 161 54 44.51.7 177 10.2 W 160 120 2.99 0 0 0 56 P2 11 17 Jan-18 556 43.400 178 53.7 W 425 456 3.00 275.0 257.0 7.19 58 P1 3 17 Jan-18 174 44 43.72 179 20.49 W 463 487 2.30 7.12 0 22.7 60 P1 28 18 Jan-18 104 43 43.43 179 10.90 W 433 2.05 3.01 2.99 1.00 0 0 0 0 0 0 0 0 0 0	Stn.	Туре	Strat.	Date	Time	Latitude	Longitude	E/W			n.mile	hoki		
12 12 16 Jam-18 516 44 29.48 176 30.29 W 537 584 298 193.88 4.1 44.2 54 P1 14 16 Jam-18 122 44 33.64 176 33.23 W 659 683 2.94 133.8 0 844 55 P1 28 16 Jam-18 1615 44 45.17 177 172 W 165 300 225.09 0 0 56 P1 13 17 Jam-18 556 43 40.00 178 43.17 W 463 487 2.93 2.01 0 0 0 61 P1 28 17 Jam-18 1744 44 34.72 179 1.30 W 463 487 2.03 10.0 0 0 0 62 P1 33 18 Jam-18 1034 43 43.33 179 1.01 W 353 370 2.93 14.0 0 0 0 0 0 0 0 0 </td <td>51</td> <td>P1</td> <td>12</td> <td>16-Ian-18</td> <td>530</td> <td>44 09 80</td> <td>177 17 89</td> <td>W</td> <td>404</td> <td>415</td> <td>3.00</td> <td>353 1</td> <td>14 7</td> <td>417</td>	51	P1	12	16-Ian-18	530	44 09 80	177 17 89	W	404	415	3.00	353 1	14 7	417
53 PI 12 10 Jan-18 827 144 2.98 119.38 4.1 44.22 54 PI 48 165 Jan-18 1229 44 33.64 176 53.23 W 653 2.94 351.8 0.0 0.0 55 PI 28 16 Jan-18 1219 174 10.1 W 160 1200 2.94 351.8 0.0 0.0 57 PI 13 17-Jan-18 1024 44 34.72 179 22.80 W 423 451 30.0 120.0 20.0 0														
54 PI 4 16-Jan-18 120 44 33.64 17 53.23 W 650 683 2.94 53.18 0 94.4 55 PI 13 17-Jan-18 2318 44 15.12 178 05.94 W 432 451 3.01 255.7 7.15 58 PI 13 17-Jan-18 1028 40 471 178 43.14 178 43.14 178 43.14 178 43.14 178 43.14 178 43.14 178 43.14 178 43.14 178 43.14 179 11.30 W 463 655 3.01 17.0 0														
S5 PI 28 16/an-18 1615 1202 W 1160 1200 2.99 0 0 0 56 PI 13 17-Jan-18 2318 4312.12 178 0.59 W 432 451 3.00 2203 2250 25.7 71.9 58 PI 13 17-Jan-18 1024 44 03.17 W 433 455 3.44 0.07 W 433 455 3.44 0.07 2.73 W 433 457 W 433 457 W 433 457 W 453 457 3.00 2.00 2.0 2.00 0 <														
66 P2 11 17-Jan-18 2318 431 2.12 178 05.73 W 4352 4556 3.01 225.0 25.7 71.9 57 P1 13 17-Jan-18 1028 44 06.74 178 32.73 W 463 487 2.93 291.6 0 0 59 P1 44 174 143 2.12 172 4.12 172 1.22 2.29 0 0 0 2.0 61" P1 25 18-Jan-18 1514 44 2.45 179 11.30 W 956 967 3.00 10.0 0 0 2.0 2.08 141.0 0 4.40 63 P1 3 18-Jan-18 1064 179 4.12 W 375 4.00 133.6 0 4.0 64 P1 3 18-Jan-18 106 471 8.33 179 0.10 15.30 3.00 1.0 0 0 0 0 0 0 0 0 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>														
57 PI 13 17-Jan-18 156 43 43.00 178 25,73 W 4423 487 2.93 291,6 0 50.8 59 PI 13 17-Jan-18 1410 4418,27 179 22,89 W 1219 1226 2.99 0 0 0 0 60 PI 28 18-Jan-18 1514 442,84 179 10.06 W 353 370 2.03 133.6 0 44.0 63 PI 3 18-Jan-18 103 43.48.68 179 21.00 W 376 400 2.98 142.6 0 0 66 PI 3 18-Jan-18 1064 43.83.3 179 41.12 W 375 380 2.99 170.0 0 78.3 67 PI 14 19-Jan-18 314 43.23.3 179 41.12 W 37.5 380 2.99 17.0 0 78.4 69 10 <														
58 PI 13 17-Jan-18 1410 44 18,92 1784,31,7 W 463 457 2.93 291,6 0 502 59 PI 28 17-Jan-18 1410 44 18,92 1784,013 W 651 655 3.01 77,12 0 2.0 61* PI 25 18-Jan-18 121 44 25,45 179 11.30 W 956 967 3.00 10.0 0 0 63 PI 3 18-Jan-18 810 43 43.68 179 21.09 W 376 400 2.98 141.0 0 70.0 78.3 66 PI 25 18-Jan-18 160 43 43.33 179 01.01 E 343 33 179 01.01 17.0 78.0 17.0 78.0 17.0 78.0 17.0 78.0 17.0 78.0 17.0 78.0 17.0 78.0 17.0 78.0 17.0 78.0 17.0 78.														
59 P1 4 17.4m-18 140 44 8.9.2 178.40.18 W 621 625 3.0.1 71.2 0 22.7 60 P1 28 17.4m-18 174 44 34.72 179.2.89 W 1219 1226 2.99 0 0 0 61* P1 13 18.4m-18 104 43.43.63 179.2.09 W 335 370 2.98 14.1.6 0 44.00 64 P1 3 18.4m-18 1034 43.43.63 179.2.019 W 376 400 2.98 14.2.6 0 44.0 65 P1 3 18.4m-18 1064 43.83.23 179.2.13 E 340 376 300 49.3 0														
60 P1 28 17-Jan-18 1744 44 34.72 179 22.89 W 1219 1226 2.99 0.0 0.0 0 61* P1 25 18-Jan-18 214 44 25.45 179 10.90 W 956 967 300 10.0 0 24.8 63 P1 3 18-Jan-18 1034 43 43.68 179 10.90 W 353 370 2.93 133.6 0 44.00 65 P1 3 18-Jan-18 1046 44 34.36 179 41.96 W 327 5330 2.99 170.0 0 0 73.3 66 P1 20 19-Jan-18 314 32.55 178 43.71 E 338 343 2.08 511.1 0 2.05 70 P1 14 19-Jan-18 816 34 2.50 178 43.71 E 338 343 2.08 511.3 5.32 0 0 173 32.3 <t< td=""><td></td><td></td><td>4</td><td>17-Jan-18</td><td></td><td></td><td>178 40.18</td><td>W</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>			4	17-Jan-18			178 40.18	W						
62 P1 13 18-Jan-18 510 43.49,43 178 50.49 W 413 426 2.98 141.3 00 24.8 63 P1 3 18-Jan-18 823 43.90,41 779 10.96 W 335 370 2.98 142.6 0 44.0 65 P1 3 18-Jan-18 160 43.48,64 179 41.96 W 375 380 2.99 197.0 0 78.3 66 P1 25 18-Jan-18 160 43.43,23 179 22.13 E 475 487 30.0 49.3 0 0 31.5 67 P1 20 19-Jan-18 54 43.31.33 179 01.01 E 340 376 30.0 49.3 0.0 31.1 52 29.5 31.1 30.0 31.1 31.1 31.1 31.1 31.1 31.1 31.1 31.1 31.1 31.1 31.1 32.2 31.1 30.1	60	P1	28	17-Jan-18	1744	44 34.72	179 22.89	W		1226			0	0
63 P1 3 I8-Jan-18 823 43 49()4 179 10,96 W 333 370 2.93 133.6 0 44,0 64 P1 3 I8-Jan-18 1034 43 36.8 179 41.09 W 376 400 2.98 197.0 0 78.3 66 P1 25 I8-Jan-18 1616 44 19,82 179 41.06 W 822 833 2.99 197.0 0 78.3 67 P1 14 19-Jan-18 54 33.3 179 01.01 E 340 376 3.00 49.3 52 2.05 69 P1 20 19-Jan-18 184 43 45.0 178 36.11 E 383 343 2.08 31.1 0 2.0 44.0 51.1 0 2.44 2.94 33.8 3.0 40.2 0 43.2 178 45.1 178 45.1 178 45.1 178 45.1 178 45.1 178 45.1 178 45.1 178 45.1	61*	P1	25	18-Jan-18	2151	44 25.45	179 11.30	W	956	967	3.00	10.0	0	0
64 P1 3 I8-Jan-18 103 43 43.68 179 23.09 W 376 400 2.98 142.6 0 44.0 65 P1 3 I8-Jan-18 1616 419.82 179 1.06 W 375 380 2.95 9.1 0 78. 66 P1 20 19-Jan-18 2035 43 31.33 179 01.01 E 340 376 3.00 49.3 0 31.6 68 P1 20 19-Jan-18 834 32.55 178 A45.71 E 343 3.76 3.03 49.3 2.0 31.6 4.52 29.5 70 P1 14 19-Jan-18 1058 43 45.40 178 3.71 E 340 347 2.13 862.8 0 10.2 71 P1 20 2-Jan-18 173 43 25.31 177 1.11 E 306 328 2.52 344.0 0 0 0 0 0	62	P1	13	18-Jan-18	510	43 49.43	178 50.49	W	413	426	2.98	141.3	0	24.8
65 P1 23 I8-Jan-18 1406 43 48.64 179 44.12 W 375 380 2.99 197.0 0 78.3 66 P1 25 I8-Jan-18 1616 44 19.82 179 41.96 W 822 833 2.99 9.1 0 0 31.6 67 P1 14 19-Jan-18 831 43 22.95 178 43.71 E 340 376 3.05 211.3 5.2 20.5 69 P1 20 19-Jan-18 816 43 42.955 178 43.71 E 338 343 2.08 312.3 1.7 52.6 71 P1 14 19-Jan-18 1521 44 03.56 178 36.11 E 447 437 3.02 643.2 0 0 1.4 73 P1 20 20-Jan-18 173 43 27.84 178 176.125 E 340 347 2.13 862.8 0 0 0 74 P1 20 20-Jan-18 173 43 25.23 <th17 2.43<="" th=""> E 301<!--</td--><td>63</td><td>P1</td><td>3</td><td>18-Jan-18</td><td>823</td><td>43 49.04</td><td>179 10.96</td><td>W</td><td>353</td><td>370</td><td>2.93</td><td>133.6</td><td>0</td><td>44.0</td></th17>	63	P1	3	18-Jan-18	823	43 49.04	179 10.96	W	353	370	2.93	133.6	0	44.0
66 P1 25 I8-Jan-18 1616 44 19.82 179 41.96 W 822 833 2.95 9.1 0 0 67 P1 14 19-Jan-18 253 43.23 179 22.13 E 475 487 3.05 21.13 5.2 20.5 69 P1 20 19-Jan-18 331 43 2.55 178 43.71 E 338 343 2.08 571.1 0 29.6 70 P1 14 19-Jan-18 180 43 42.50 178 36.11 E 427 437 3.02 64.32 0 45.9 72 P1 20 20-Jan-18 1731 43 27.84 178 12.5 E 340 347 2.13 86.28 0 <t< td=""><td>64</td><td>P1</td><td>3</td><td>18-Jan-18</td><td>1034</td><td>43 43.68</td><td>179 23.09</td><td>W</td><td>376</td><td>400</td><td>2.98</td><td>142.6</td><td>0</td><td>44.0</td></t<>	64	P1	3	18-Jan-18	1034	43 43.68	179 23.09	W	376	400	2.98	142.6	0	44.0
67 P1 14 19-Jan-18 2035 43 43.23 179 22.13 E 475 487 3.00 49.3 0 31.6 68 P1 20 19-Jan-18 54 43 31.33 179 01.01 E 340 376 3.00 20.8 571.1 0 29.6 70 P1 14 19-Jan-18 816 43 42.56 178 46.86 E 441 446 2.98 312.3 1.7 52.6 71 P1 26 19-Jan-18 1058 43 45.40 178 36.11 E 427 437 3.02 643.2 0 45.9 72 P1 20 20-Jan-18 171 43 27.84 178 14.55 E 340 351 3.01 498.1 0 1.4 75 P1 20 20-Jan-18 153 42 5.23 177 32.43 E 301 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	65	P1	3	18-Jan-18	1406	43 48.64	179 44.12	W	375	380	2.99	197.0	0	78.3
68 P1 20 19-Jan-18 54 43 31.33 179 01.01 E 340 376 3.05 211.3 5.2 20.5 69 P1 20 19-Jan-18 311 43 20.55 178 43.71 E 338 343 2.08 571.1 0 29.6 70 P1 14 19-Jan-18 1058 178 36.11 E 441 446 2.98 312.3 1.7 52.6 71 P1 14 19-Jan-18 1521 44 03.56 178 37.91 E 816 824 2.91 38.6 0 0 73 P1 20 20-Jan-18 173 1.43 27.84 178 10.25 E 313 31.01 49.81 0 1.4 75 P1 20 20-Jan-18 713 43 25.31 177 07.11 E 306 328 2.52 344.0 0 0 0 0 0 0 0 0 0	66	P1	25	18-Jan-18	1616	44 19.82	179 41.96	W	822	833	2.95	9.1	0	0
69 P1 20 19-Jan-18 331 43 29.55 178 43.71 E 338 343 2.08 571.1 0 29.6 70 P1 14 19-Jan-18 186 43 42.50 178 46.86 E 441 446 2.98 312.3 1.77 52.6 72 P1 26 19-Jan-18 1521 44 03.56 178 37.91 E 816 824 2.91 38.6 0 0 74 P1 20 20-Jan-18 731 43 27.84 178 14.55 E 340 347 2.13 862.8 0 10.2 75 P1 20 20-Jan-18 733 43 25.31 177 47.11 E 306 328 2.52 344.0 0	67	P1	14	19-Jan-18	2035	43 43.23	179 22.13	Е	475	487	3.00	49.3	0	31.6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	68	P1	20	19-Jan-18	54	43 31.33	179 01.01	Е	340	376	3.05	211.3	5.2	20.5
71 P1 14 19-Jan-18 1058 43 45.40 178 36.11 E 427 437 3.02 643.2 0 45.9 72 P1 20 19-Jan-18 1521 44 03.56 178 37.91 E 816 824 2.91 38.6 0 0 73 P1 20 20-Jan-18 121 43 17.8 178 175.5 E 340 347 2.13 862.8 0 10.2 74 P1 20 20-Jan-18 124 31.178 178 178.12.5 E 330 300 363.9 0 1.3 75 P1 20 20-Jan-18 145 43 25.31 177 47.11 E 306 328 2.52 344.0 0 <td>69</td> <td>P1</td> <td>20</td> <td>19-Jan-18</td> <td>331</td> <td>43 29.55</td> <td>178 43.71</td> <td>Е</td> <td>338</td> <td>343</td> <td>2.08</td> <td>571.1</td> <td>0</td> <td>29.6</td>	69	P1	20	19-Jan-18	331	43 29.55	178 43.71	Е	338	343	2.08	571.1	0	29.6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	70	P1	14	19-Jan-18	816	43 42.56	178 46.86	Е	441	446	2.98	312.3	1.7	52.6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	71	P1	14	19-Jan-18	1058	43 45.40	178 36.11	Е	427	437	3.02	643.2	0	45.9
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	72	P1	26	19-Jan-18	1521	44 03.56	178 37.91	Е	816	824	2.91	38.6	0	0
75 P1 20 20-Jan-18 145 43 25.31 177 47.11 E 306 328 2.52 344.0 0 0 76 P1 20 20-Jan-18 733 43 26.28 177 32.43 E 301 317 3.00 363.9 0 1.3 77 P1 29 21-Jan-18 1539 44 25.93 178 06.67 E 1208 1210 3.01 0 0 0 78 P1 29 21-Jan-18 1739 44 29.32 177 25.20 E 1263 1289 3.01 0 0 0 80 P1 26 21-Jan-18 170 44 06.85 177 21.45 E 839 888 3.03 32.9 0 0 0 81 P1 26 21-Jan-18 144 417.29 176 08.60 E 242 349 2.96 357.6 0 0 12.2 84 P1 17 22-Jan-18 142 55.99 174 34.30 E 511 538 2.99 </td <td>73</td> <td>P1</td> <td>20</td> <td>20-Jan-18</td> <td>1731</td> <td>43 27.84</td> <td>178 14.55</td> <td>Е</td> <td>340</td> <td>347</td> <td>2.13</td> <td>862.8</td> <td>0</td> <td>10.2</td>	73	P1	20	20-Jan-18	1731	43 27.84	178 14.55	Е	340	347	2.13	862.8	0	10.2
76 P1 20 20-Jan-18 733 43 26.28 177 32.43 E 301 317 3.00 363.9 0 1.13 77 P1 29 21-Jan-18 1151 44 16.60 178 21.50 E 1150 1173 3.26 0 0 0 78 P1 29 21-Jan-18 1739 44 25.93 177 05.20 E 1268 1210 3.01 0 0 0 0 80 P1 26 21-Jan-18 102 40 6.85 177 21.45 E 885 909 2.95 7.3 0 0 81 P1 26 21-Jan-18 179 142.89 E 242 349 2.96 357.6 0 32.3 83 P1 17 22-Jan-18 144 07.82 176 08.60 E 267 274 3.01 2157.6 0 12.2 84 P1 7A 23-Jan-18 131 43 09.59 174 24.90 E 511 538 2.99 150.7 4.6	74	P1	20	20-Jan-18	2212	43 11.78	178 01.25	Е	334	351	3.01	498.1	0	1.4
77 P1 29 21-Jan-18 1151 44 16.60 178 21.50 E 1150 1173 3.26 0 0 0 78 P1 29 21-Jan-18 1539 44 25.93 178 00.67 E 1208 1210 3.01 0 0 0 79 P1 29 21-Jan-18 1739 44 25.93 177 21.45 E 839 888 3.03 32.9 0 0 80 P1 26 21-Jan-18 194 423.11 176 12.24 E 242 349 2.96 357.6 0 0 12.2 84 P1 17 22-Jan-18 144 44 07.82 176 08.60 E 267 274 3.01 2157.16 0 12.2 84 P1 17 22-Jan-18 173 147 075 1.49 E 511 538 2.99 150.77 4.8 12.50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	75	P1	20	20-Jan-18	145	43 25.31	177 47.11	Е	306	328	2.52	344.0	0	0
78P1 29 21 -Jan-18 1539 44 25.93 178 0.67 E 1208 1210 3.01 0 0 0 79 P1 29 21 -Jan-18 1739 44 29.32 177 25.20 E 1263 1289 3.01 0 0 0 80 P1 26 21 -Jan-18 102 44 06.85 177 21.45 E 839 888 3.03 32.9 0 0 81 P1 26 21 -Jan-18 102 44 07.21 176 12.24 E 835 909 2.95 7.3 0 0 82 P117 22 -Jan-18 1194 407.82 176 86.66 E 267 274 3.01 21571.6 0 12.2 84 P117 22 -Jan-18 1738 44 07.82 176 8.66 267 274 3.01 21571.6 0 12.2 84 P117 22 -Jan-18 1738 44 07.82 175 51.8 E 300 342 3.04 295.8 0 81.33 85 P116 22 -Jan-18 321 425.99 174 34.30 E 915 932 2.99 59.3 0 0 86 P1 72 23 -Jan-18 611 430.32 174 41.06 E 472 487 3.01 110.8 8.7 25.7	76	P1	20	20-Jan-18	733	43 26.28	177 32.43	Е	301	317	3.00	363.9	0	1.3
79 P1 29 21-Jan-18 1739 44 29.32 177 25.20 E 1263 1289 3.01 0 0 0 80 P1 26 21-Jan-18 102 44 06.85 177 21.45 E 839 888 3.03 32.9 0 0 81 P1 26 21-Jan-18 519 44 23.11 176 42.89 E 885 909 2.95 7.3 0 0 82 P1 17 22-Jan-18 924 44 07.82 176 08.60 E 267 74 3.01 21571.6 0 12.2 84 P1 17 22-Jan-18 149 44 07.82 176 08.60 E 267 7.4 3.01 21571.6 0 81.3 85 P1 16 22-Jan-18 321 42 55.99 174 34.30 E 915 932 2.99 59.3 0 0 0 87 P1 7A 23-Jan-18 641 43 0.959 174 2.90 E 589 600 2.68 <	77	P1	29	21-Jan-18	1151	44 16.60	178 21.50	Е	1150	1173	3.26	0	0	0
80P126 21 -Jan-18102 $44 06.85$ $177 21.45$ E839888 3.03 32.9 0081P126 21 -Jan-18519 $44 23.11$ $176 42.89$ E 885 909 2.95 7.3 0082P117 22 -Jan-18924 $44 17.29$ $176 12.24$ E 242 349 2.96 357.6 0 32.3 83P117 22 -Jan-18 1149 $44 07.82$ $176 08.60$ E 267 274 3.01 21571.6 0 12.2 84P117 22 -Jan-18 1738 $44 10.93$ $175 50.18$ E 300 342 3.04 295.8 0 81.3 85P116 22 -Jan-18 $321 42 55.99$ $174 34.30$ E 915 932 2.99 59.3 0086P122 23 -Jan-18 611 $43 09.59$ $174 22.90$ E 589 600 2.68 226.7 5.7 41.6 88P17A 23 -Jan-18 1217 $43 39.34$ $174 10.06$ E 472 487 2.91 120.9 5.2 179.0 89P122 23 -Jan-18 100 $42 55.48$ $174 45.69$ E 1037 1044 3.02 0 2.0 090P113 24 -Jan-18 100 $42 55.48$ $175 20.65$ E 363 393 2.94 5105.9 8.2	78	P1	29	21-Jan-18	1539	44 25.93	178 00.67	Е	1208	1210	3.01	0	0	0
81P12621-Jan-1851944 23.11176 42.89E8859092.957.30082P11722-Jan-1892444 17.29176 12.24E2423492.96357.6032.383P11722-Jan-18114944 07.82176 08.60E2672743.0121571.6012.284P11722-Jan-1817344 10.93175 50.18E3003423.04295.8081.385P11622-Jan-1832142 55.99174 34.30E9159322.9959.30086P12223-Jan-1864143 09.59174 22.90E5896002.68226.75.741.688P17A23-Jan-1861143 03.21174 04.65E8458683.0379.24.6090P12223-Jan-18161043 03.21174 45.69E103710443.0202.0091P1124-Jan-1810042 55.48174 50.54E7417453.01110.88.72.5792P11824-Jan-1810042 55.48174 50.54E7417453.01110.88.72.5793P11824-Jan-1811042 56.19175 20.65E515529<	79	P1	29	21-Jan-18	1739	44 29.32	177 25.20	Е	1263	1289	3.01	0	0	0
82 P1 17 22-Jan-18 924 44 17.29 176 12.24 E 242 349 2.96 357.6 0 32.3 83 P1 17 22-Jan-18 1149 44 07.82 176 08.60 E 267 274 3.01 21571.6 0 12.2 84 P1 17 22-Jan-18 1738 44 10.93 175 50.18 E 300 342 3.04 295.8 0 81.3 85 P1 16 22-Jan-18 321 42 55.99 174 34.30 E 915 932 2.99 59.3 0 0 86 P1 22 23-Jan-18 641 43 09.59 174 22.90 E 589 600 2.68 226.7 5.7 41.6 87 P1 7A 23-Jan-18 121 43 93.32 174 40.45 E 843 868 3.03 79.2 4.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<	80	P1	26	21-Jan-18	102	44 06.85	177 21.45	Е	839	888	3.03	32.9	0	0
83 P1 17 22-Jan-18 1149 44 07.82 176 08.60 E 267 274 3.01 21571.6 0 12.2 84 P1 17 22-Jan-18 1738 44 10.93 175 50.18 E 300 342 3.04 295.8 0 81.3 85 P1 16 22-Jan-18 321 42 55.99 174 34.30 E 915 932 2.99 59.3 0 0 86 P1 7A 23-Jan-18 641 43 09.59 174 22.90 E 589 600 2.68 226.7 5.7 41.6 88 P1 7A 23-Jan-18 641 43 09.59 174 22.90 E 889 600 2.68 226.7 5.7 41.6 89 P1 22 23-Jan-18 1610 43 03.22 174 44.56 E 1037 1044 3.02 0 2.0 0 90 P1 1 24-Jan-18 100 42 55.48 174 50.54 E 741 745 3.01 <t< td=""><td>81</td><td>P1</td><td>26</td><td>21-Jan-18</td><td>519</td><td>44 23.11</td><td>176 42.89</td><td>Е</td><td>885</td><td>909</td><td>2.95</td><td>7.3</td><td>0</td><td>0</td></t<>	81	P1	26	21-Jan-18	519	44 23.11	176 42.89	Е	885	909	2.95	7.3	0	0
84 P1 17 22-Jan-18 173 44 10.93 175 50.18 E 300 342 3.04 295.8 0 81.3 85 P1 16 22-Jan-18 2356 44 03.36 175 31.49 E 511 538 2.99 1250.7 4.8 125.0 86 P1 22 23-Jan-18 321 42 55.99 174 34.30 E 915 932 2.99 59.3 0 0 87 P1 7A 23-Jan-18 641 43 09.59 174 22.90 E 589 600 2.68 226.7 5.7 41.6 88 P1 7A 23-Jan-18 101 43 03.32 174 04.25 E 845 868 3.03 79.2 4.6 0 90 P1 23 24-Jan-18 100 42 55.48 174 5.69 E 1037 1044 3.02 0 2.0 0 18.9 93 P1 18	82	P1	17	22-Jan-18	924	44 17.29	176 12.24	Е	242	349	2.96	357.6	0	32.3
85 P1 16 22-Jan-18 2356 44 03.36 175 31.49 E 511 538 2.99 1250.7 4.8 1250 86 P1 22 23-Jan-18 321 42 55.99 174 34.30 E 915 932 2.99 59.3 0 0 87 P1 7A 23-Jan-18 641 43 09.59 174 22.90 E 589 600 2.68 226.7 5.7 41.6 88 P1 7A 23-Jan-18 1610 43 03.32 174 04.25 E 845 868 3.03 79.2 4.6 0 90 P1 23 24-Jan-18 100 42 55.48 174 50.54 E 1037 1044 3.02 0 2.0 0 91 P1 1 24-Jan-18 100 42 55.48 174 50.54 E 741 745 3.01 110.8 8.7 25.7 92 P1 18 24-Jan-18 505 43 06.09 175 00.26 E 363 393 2.94	83	P1	17	22-Jan-18	1149	44 07.82	176 08.60	Е	267	274	3.01	21571.6	0	12.2
86 P1 22 23-Jan-18 321 42 55.99 174 34.30 E 915 932 2.99 59.3 0 0 87 P1 7A 23-Jan-18 641 43 09.59 174 22.90 E 589 600 2.68 226.7 5.7 41.6 88 P1 7A 23-Jan-18 1217 43 39.34 174 10.06 E 472 487 2.91 120.9 5.2 179.0 89 P1 22 23-Jan-18 1610 43 03.32 174 04.25 E 845 868 3.03 79.2 4.6 0 90 P1 23 24-Jan-18 100 42 55.48 174 50.54 E 741 745 3.01 110.8 8.7 25.7 92 P1 18 24-Jan-18 100 42 55.48 174 50.54 E 363 393 2.94 5105.9 8.2 52.5 94 P1 7A	84	P1	17	22-Jan-18	1738	44 10.93	175 50.18	Е	300	342	3.04	295.8	0	81.3
87P17A23-Jan-1864143 09.59174 22.90E5896002.68226.75.741.688P17A23-Jan-18121743 39.34174 10.06E4724872.91120.95.2179.089P12223-Jan-18161043 03.32174 04.25E8458683.0379.24.6090P12324-Jan-18194442 49.98174 45.69E103710443.0202.0091P1124-Jan-1810042 55.48174 50.54E7417453.01110.88.725.792P11824-Jan-1850543 06.09175 00.26E3483802.14412.2018.993P11824-Jan-1880243 21.10174 48.75E3633932.945105.98.252.594P17A24-Jan-18111042 56.19175 20.65E5155292.10349.661.4121.795P12224-Jan-1821742 52.89175 27.91E6306452.97170.6025.394P1125-Jan-1820242 53.46175 36.52E6126323.00152.210.096.795P1125-Jan-1820242 53.46175 36.52E <th< td=""><td>85</td><td>P1</td><td>16</td><td>22-Jan-18</td><td>2356</td><td>44 03.36</td><td>175 31.49</td><td>Е</td><td>511</td><td>538</td><td>2.99</td><td>1250.7</td><td>4.8</td><td>125.0</td></th<>	85	P1	16	22-Jan-18	2356	44 03.36	175 31.49	Е	511	538	2.99	1250.7	4.8	125.0
88P17A23-Jan-18121743 39.34174 10.06E4724872.91120.95.2179.089P12223-Jan-18161043 03.32174 04.25E845868 3.03 79.24.6090P12324-Jan-18194442 49.98174 45.69E10371044 3.02 02.0091P1124-Jan-1810042 55.48174 50.54E7417453.01110.88.725.792P11824-Jan-1850543 06.09175 00.26E3483802.14412.2018.993P11824-Jan-1880243 21.10174 48.75E3633932.945105.98.252.594P17A24-Jan-18111042 56.19175 20.65E5155292.10349.661.4121.795P12224-Jan-18171942 41.72176 06.84E8839063.0236.20096P1125-Jan-1820242 53.46175 36.52E6276323.00152.210.096.798P17B25-Jan-1860842 59.27175 54.08E5375432.99152.35.9104.399P11925-Jan-1815242 40.92176 22.03E <td>86</td> <td>P1</td> <td>22</td> <td>23-Jan-18</td> <td>321</td> <td>42 55.99</td> <td>174 34.30</td> <td>Е</td> <td>915</td> <td>932</td> <td>2.99</td> <td>59.3</td> <td>0</td> <td>0</td>	86	P1	22	23-Jan-18	321	42 55.99	174 34.30	Е	915	932	2.99	59.3	0	0
89P12223-Jan-18161043 03.32174 04.25E8458683.0379.24.6090P12324-Jan-18194442 49.98174 45.69E103710443.0202.0091P1124-Jan-1810042 55.48174 50.54E7417453.01110.88.725.792P11824-Jan-1850543 06.09175 00.26E3483802.14412.2018.993P11824-Jan-1880243 21.10174 48.75E3633932.945105.98.252.594P17A24-Jan-18111042 56.19175 20.65E5155292.10349.661.4121.795P12224-Jan-18171942 41.72176 06.84E8839063.0236.20096P1125-Jan-1820242 53.46175 36.52E6276323.00152.210.096.798P17B25-Jan-1815243 05.63176 17.02E3844002.09137.703.6100P12225-Jan-1815242 40.92176 22.03E8878923.0158.66.80101P12325-Jan-1815242 37.13176 32.48E1156 <td>87</td> <td>P1</td> <td>7A</td> <td>23-Jan-18</td> <td>641</td> <td>43 09.59</td> <td>174 22.90</td> <td>Е</td> <td>589</td> <td>600</td> <td>2.68</td> <td>226.7</td> <td>5.7</td> <td>41.6</td>	87	P1	7A	23-Jan-18	641	43 09.59	174 22.90	Е	589	600	2.68	226.7	5.7	41.6
90P12324-Jan-18194442 49.98174 45.69E103710443.0202.0091P1124-Jan-1810042 55.48174 50.54E7417453.01110.88.725.792P11824-Jan-1850543 06.09175 00.26E3483802.14412.2018.993P11824-Jan-1880243 21.10174 48.75E3633932.945105.98.252.594P17A24-Jan-18111042 56.19175 20.65E5155292.10349.661.4121.795P12224-Jan-18171942 41.72176 06.84E8839063.0236.20096P1125-Jan-18221742 52.89175 27.91E6306452.97170.6025.397P1125-Jan-1820242 53.46175 36.52E6276323.00152.210.096.798P17B25-Jan-1860842 59.27175 54.08E5375432.99152.35.9104.399P11925-Jan-1815242 40.92176 22.03E8878923.0158.66.80100P12325-Jan-1815542 37.13176 32.48E1156			7A	23-Jan-18	1217	43 39.34	174 10.06	Е	472		2.91	1200.9	5.2	179.0
91P1124-Jan-181004255.4817450.54E7417453.01110.88.725.792P11824-Jan-185054306.0917500.26E3483802.14412.2018.993P11824-Jan-188024321.1017448.75E3633932.945105.98.252.594P17A24-Jan-1811104256.1917520.65E5155292.10349.661.4121.795P12224-Jan-1817194241.7217606.84E8839063.0236.20096P1125-Jan-1822174252.8917527.91E6306452.97170.6025.397P1125-Jan-182024253.4617536.52E6276323.00152.210.096.798P17B25-Jan-181524305.6317617.02E3844002.09137.703.6100P12325-Jan-1815524240.9217622.03E8878923.0158.66.80101P12325-Jan-1819544237.1317632.48E115611812.99 <td>89</td> <td>P1</td> <td>22</td> <td></td> <td>1610</td> <td>43 03.32</td> <td>174 04.25</td> <td>Е</td> <td>845</td> <td></td> <td>3.03</td> <td>79.2</td> <td></td> <td>0</td>	89	P1	22		1610	43 03.32	174 04.25	Е	845		3.03	79.2		0
92P11824-Jan-1850543 06.09175 00.26E3483802.14412.2018993P11824-Jan-1880243 21.10174 48.75E3633932.945105.98.252.594P17A24-Jan-18111042 56.19175 20.65E5155292.10349.661.4121.795P12224-Jan-18171942 41.72176 06.84E8839063.0236.20096P1125-Jan-18221742 52.89175 27.91E6306452.97170.6025.397P1125-Jan-1820242 53.46175 36.52E6276323.00152.210.096.798P17B25-Jan-1860842 59.27175 54.08E5375432.99152.35.9104.399P11925-Jan-1815242 40.92176 22.03E3844002.09137.703.6100P12325-Jan-1815542 37.13176 32.48E115611812.99000102*P12325-Jan-18255.042 35.30176 24.53E119912172.09000102*P12325-Jan-18255.042 35.30176 24.53E1199<			23	24-Jan-18	1944	42 49.98	174 45.69	Е	1037	1044			2.0	0
93P11824-Jan-1880243 21.10174 48.75E3633932.945105.98.252.594P17A24-Jan-18111042 56.19175 20.65E5155292.10349.661.4121.795P12224-Jan-18171942 41.72176 06.84E8839063.0236.20096P1125-Jan-18221742 52.89175 27.91E6306452.97170.6025.397P1125-Jan-1820242 53.46175 36.52E6276323.00152.210.096.798P17B25-Jan-1860842 59.27175 54.08E5375432.99152.35.9104.399P11925-Jan-18115243 05.63176 17.02E3844002.09137.703.6100P12225-Jan-18155242 40.92176 22.03E8878923.0158.66.80101P12325-Jan-18195442 37.13176 32.48E115611812.99000102*P12325-Jan-18255042 35.30176 24.53E119912172.09000103P11926-Jan-1885643 04.98177 04.99E315 <td></td> <td></td> <td>1</td> <td>24-Jan-18</td> <td>100</td> <td></td> <td>174 50.54</td> <td>Е</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			1	24-Jan-18	100		174 50.54	Е						
94P17A24-Jan-18111042 56.19175 20.65E5155292.10349.661.4121.795P12224-Jan-18171942 41.72176 06.84E8839063.0236.20096P1125-Jan-18221742 52.89175 27.91E6306452.97170.6025.397P1125-Jan-1820242 53.46175 36.52E6276323.00152.210.096.798P17B25-Jan-1860842 59.27175 54.08E5375432.99152.35.9104.399P11925-Jan-18115243 05.63176 17.02E3844002.09137.703.6100P12225-Jan-18155242 40.92176 22.03E8878923.0158.66.80101P12325-Jan-18195442 37.13176 32.48E115611812.99000102*P12325-Jan-18235042 35.30176 24.53E119912172.09000103P11926-Jan-1885643 04.98177 04.99E3153402.0976.400.4				24-Jan-18		43 06.09	175 00.26							
95P12224-Jan-18171942 41.72176 06.84E8839063.0236.20096P1125-Jan-18221742 52.89175 27.91E6306452.97170.6025.397P1125-Jan-1820242 53.46175 36.52E6276323.00152.210.096.798P17B25-Jan-1860842 59.27175 54.08E5375432.99152.35.9104.399P11925-Jan-18115243 05.63176 17.02E3844002.09137.703.6100P12225-Jan-18155242 40.92176 22.03E8878923.0158.66.80101P12325-Jan-18195442 37.13176 32.48E115611812.99000102*P12325-Jan-18235042 35.30176 24.53E119912172.09000103P11926-Jan-1885643 04.98177 04.99E3153402.0976.400.4			18					Е						
96P1125-Jan-18221742 52.89175 27.91E6306452.97170.6025.397P1125-Jan-1820242 53.46175 36.52E6276323.00152.210.096.798P17B25-Jan-1860842 59.27175 54.08E5375432.99152.35.9104.399P11925-Jan-18115243 05.63176 17.02E3844002.09137.703.6100P12225-Jan-18155242 40.92176 22.03E8878923.0158.66.80101P12325-Jan-18195442 37.13176 32.48E115611812.99000102*P12325-Jan-18235042 35.30176 24.53E119912172.09000103P11926-Jan-1885643 04.98177 04.99E3153402.0976.400.4														
97P1125-Jan-182024253.4617536.52E6276323.00152.210.096.798P17B25-Jan-186084259.2717554.08E5375432.99152.35.9104.399P11925-Jan-1811524305.6317617.02E3844002.09137.703.6100P12225-Jan-1815524240.9217622.03E8878923.0158.66.80101P12325-Jan-1819544237.1317632.48E115611812.99000102*P12325-Jan-1823504235.3017624.53E119912172.09000103P11926-Jan-188564304.9817704.99E3153402.0976.400.4			22		1719	42 41.72	176 06.84							
98 P1 7B 25-Jan-18 608 42 59.27 175 54.08 E 537 543 2.99 152.3 5.9 104.3 99 P1 19 25-Jan-18 1152 43 05.63 176 17.02 E 384 400 2.09 137.7 0 3.6 100 P1 22 25-Jan-18 1552 42 40.92 176 22.03 E 887 892 3.01 58.6 6.8 0 101 P1 23 25-Jan-18 1954 42 37.13 176 32.48 E 1156 1181 2.99 0 0 0 0 102* P1 23 25-Jan-18 2350 42 35.30 176 24.53 E 1199 1217 2.09 0 0 0 0 102* P1 23 25-Jan-18 2350 42 35.30 176 24.53 E 1199 1217 2.09 0 0 0 0 103			1											
99 P1 19 25-Jan-18 1152 43 05.63 176 17.02 E 384 400 2.09 137.7 0 3.6 100 P1 22 25-Jan-18 1552 42 40.92 176 22.03 E 887 892 3.01 58.6 6.8 0 101 P1 23 25-Jan-18 1954 42 37.13 176 32.48 E 1156 1181 2.99 0 0 0 102* P1 23 25-Jan-18 2350 42 35.30 176 24.53 E 1199 1217 2.09 0 0 0 102* P1 23 25-Jan-18 2350 42 35.30 176 24.53 E 1199 1217 2.09 0 0 0 103 P1 19 26-Jan-18 856 43 04.98 177 04.99 E 315 340 2.09 76.4 0 0.4														
100P12225-Jan-18155242 40.92176 22.03E8878923.0158.66.80101P12325-Jan-18195442 37.13176 32.48E115611812.99000102*P12325-Jan-18235042 35.30176 24.53E119912172.09000103P11926-Jan-1885643 04.98177 04.99E3153402.0976.400.4														
101 P1 23 25-Jan-18 1954 42 37.13 176 32.48 E 1156 1181 2.99 0 0 0 102* P1 23 25-Jan-18 2350 42 35.30 176 24.53 E 1199 1217 2.09 0 0 0 103 P1 19 26-Jan-18 856 43 04.98 177 04.99 E 315 340 2.09 76.4 0 0.4														
102* P1 23 25-Jan-18 2350 42 35.30 176 24.53 E 1199 1217 2.09 0 0 0 103 P1 19 26-Jan-18 856 43 04.98 177 04.99 E 315 340 2.09 76.4 0 0.4														
103 P1 19 26-Jan-18 856 43 04.98 177 04.99 E 315 340 2.09 76.4 0 0.4														
104 D1 10 07 1_{22} 10 1024 42 00 40 102 12 00 E 200 250 2.17 204.0 0 20 5														
104 P1 19 26-Jan-18 1034 43 00.40 177 13.20 E 323 352 3.16 304.3 0 30.5	104	P1	19	26-Jan-18	1034	43 00.40	177 13.20	E	323	352	3.16	304.3	0	30.5

						Start tow		Gear dep	pth (m)	Dist.		Cate	ch (kg)
Stn.	Type	Strat.	Date	Time	Latitude	Longitude	E/W	min.	max.	n.mile	hoki	hake	ling
105	P1	22	26-Jan-18	1415	42 43.04	177 25.18	Е	968	976	2.95	23.3	27.8	0
106	P1	20	27-Jan-18	538	43 34.23	177 46.85	Е	382	397	3.00	851.4	0	67.9
107	P1	19	27-Jan-18	837	43 26.05	177 27.53	Е	270	286	2.21	23.8	0	0
108	P1	19	27-Jan-18	1135	43 18.61	177 11.04	Е	219	231	2.64	0	0	0
109	P1	19	27-Jan-18	1353	43 27.60	177 09.75	Е	250	275	2.98	0	0	0
110	P1	19	27-Jan-18	1727	43 26.92	176 43.77	Е	253	261	3.04	3.4	0	0
111	P1	7B	28-Jan-18	538	43 09.12	175 54.38	Е	405	430	3.04	359.5	93.2	23.8
112	P1	7B	28-Jan-18	738	43 14.66	175 54.14	Е	414	442	2.70	267.2	1007.3	170.3
113	P1	18	28-Jan-18	937	43 19.56	175 45.31	Е	301	312	2.08	1924.2	13.4	0
114	P1	18	28-Jan-18	1213	43 27.44	175 42.02	Е	279	283	2.28	5087.6	0	0
115	P2	18	28-Jan-18	1545	43 28.15	175 34.28	Е	205	229	2.12	272.1	0	0
116	P1	15	29-Jan-18	559	43 41.32	176 40.79	Е	447	449	3.02	1129.0	16.6	149.3
117	P1	15	29-Jan-18	804	43 40.17	176 33.37	Е	407	416	2.99	268.6	0	138.2
118	P1	15	29-Jan-18	1230	43 48.03	176 05.20	Е	441	442	2.97	2281.7	0	65.4
119	P1	16	29-Jan-18	1424	43 49.92	175 57.08	Е	462	468	2.22	1190.0	0	90.3
120	P2	18	29-Jan-18	1813	43 44.62	175 18.42	Е	383	396	2.43	836.7	0	4.2
121	P1	6	30-Jan-18	554	44 33.95	174 46.55	Е	750	775	3.02	59.2	0	0
122*	P1	6	30-Jan-18	1202	44 20.73	173 46.08	Е	670	676	2.06	170.9	0	11.1
123	P1	6	30-Jan-18	1448	44 35.06	173 34.48	Е	722	726	2.12	60.9	5.3	13.9
124	P1	16	30-Jan-18	1745	44 25.20	173 22.23	Е	487	525	2.12	363.2	0	0.7
125	P1	27	31-Jan-18	39	44 47.49	172 37.16	Е	916	937	3.00	5.0	0	0
126	P1	27	31-Jan-18	429	44 42.42	173 07.56	Е	869	870	2.73	24.8	0	0
127	P1	6	31-Jan-18	1105	44 21.20	174 10.21	Е	670	680	2.10	187.1	0	13.5
128	P1	27	31-Jan-18	1548	44 44.44	174 00.04	Е	843	850	2.22	2181.4	0	0
129	P1	30	1-Feb-18	36	44 55.35	173 29.23	Е	1148	1199	2.90	0	0	0
130	P1	30	1-Feb-18	410	45 01.09	173 21.97	Е	1199	1213	2.29	0	0	0

Appendix 2: Scientific and common names of species caught from all tows (TAN1801). The occurrence (Occ.) of each species (number of tows caught) in all 130 tows is also shown. Note that species codes are continually updated on the database following this and other surveys.

Scientific name	Common name	Species	Occ.
Algae	unspecified seaweed	SEO	2
Porifera Astrophorida (sandpaper sponges)	unspecified sponges	ONG	5
Ancorinidae <i>Ecionemia novaezelandiae</i> Geodiidae	knobbly sandpaper sponge	ANZ	3
Geodia vestigifera Hadromerida (woody sponges)	ostrich egg sponge	GVE	1
Suberitidae Suberites affinis Haplosclerida (air sponges) Callyspongiidae	fleshy club sponge	SUA	7
Callyspongia cf. ramosa Spirophorida (spiral sponges) Tetillidae	airy finger sponge	CRM	3
<i>Tetilla australe</i> <i>T. leptoderma</i> Hexactinellida (glass sponges) Hexactinosida (lacey honeycomb sponges)	bristle ball sponge furry oval sponge unspecified glass sponge	TTL TLD GLS	1 2 1
Farreidae <i>Farrea</i> sp. Lyssacinosida (glass horn sponges)	lacey honeycomb sponge	FAR	1
Euplectellidae <i>Euplectella regalis</i> Rossellidae	basket-weave horn sponge	ERE	3
Caulophacus cf. lotifolium Hyalascus sp. Poecilosclerida (bright sponges)	floppy tubular sponge	CLC HYA	1 30
Coelosphaeridae Lissodendoryx bifacialis Crellidae	floppy chocolate plate sponge	LBI	6
<i>Crella incrustans</i> Hymedesmiidae	orange frond sponge	CIC	1
Phorbas sp.	grey fibrous massive sponge	PHB	3
Cnidaria Scyphozoa Anthozoa Octocorallia	unspecified jellyfish	JFI	41
Alcyonacea (soft corals) Alcyoniidae	unspecified soft coral	SOC	1
<i>Heteropolypus</i> spp. Isididae		SOC	1
<i>Keratoisis</i> spp. Paragorgiidae	branching bamboo coral	BOO	1
Paragorgia spp. Plexauridae Primnoidae	bubblegum coral plexaurid sea fans	PAB PLE	2 1
Narella spp. Thourella spp. Pennatulacea (sea pens)	rasta coral bottlebrush coral unspecified sea pens	NAR THO PTU	1 3 2
Funiculinidae Funiculina quadrangularis	rope-like sea pen	FQU	10

Scientific name	Common name	Species	Occ.
Halipteridae			
Halipteris willemoesi	two-toothed sea pen	HWL	1
Pennatulidae	_		-
Pennatula spp.	purple sea pen	PNN	3
Protoptilidae Distichoptilum gracile	two lined see per	DGR	5
Virgulariidae	two-lined sea pen	DOK	5
Stylatula austropacifica	armoured sea pen	STF	1
Hexacorallia	r i i i i i i i i i i i i i i i i i i i		
Zoanthidea (zoanthids)			
Epizoanthidae			
<i>Epizoanthus</i> sp.		EPZ	5
Corallimorpharia (coral-like anemones) Corallimorphidae			
<i>Corallimorphus</i> spp.	coral-like anemone	CLM	2
Actinaria (anemones)	unspecified anemone	ANT	3
Actiniidae			U
Bolocera spp.	deepsea anemone	BOC	1
Actinostolidae (smooth deepsea anemones)		ACS	25
Hormathiidae (warty deepsea anemones)		HMT	15
Scleractinia (stony corals)			
Caryophyllidae Caryophyllia profunda	cornetion our corel	CAY	1
Desmophyllum dianthus	carnation cup coral crested cup coral	DDI	1 6
Goniocorella dumosa	bushy hard coral	GDU	5
Flabellidae		020	5
Flabellum spp.	flabellum coral	COF	2
Oculinidae			
Madrepora oculata	madrepora coral	MOC	1
Hydrozoa (hydroids)	unspecified hydroids	HDR	2
Anthoathecata			
Stylasteridae Calyptopora reticulata	white hydrocoral	CRE	2
Errina spp.	red hydrocorals	ERR	1
Leptothecata		2	-
Lafoeidae			
Acryptolaria spp.		HDR	1
Cryptolaria prima		HDR	1
Tunicata Thaliacea			
Pyrosomida (pyrosomes)			
Pyrosomatidae			
Pyrosoma atlanticum		PYR	73
Salpida (salps)	unspecified salps	SAL	7
Salpidae			
Thetys vagina		ZVA	13
Mollusca			
Gastropoda (gastropods)	unspecified gastropods	GAS	1
Buccinidae (whelks)	Encreented Subtropods		1
Aeneator recens		AER	1
Austrofusus glans	knobbed whelk	KWH	1
Ranellidae (tritons)			
Fusitriton magellanicus		FMA	3
Nudibranchia (nudibranchs)	unspecified nudibranch	NUD	3
Bivalvia (bivalves)			

Scientific nameCommon nameSpeciesOcc.Limidae Acesta maai Mylidaegiant file shellAMA1Mylidaegiant file shellAMA1Perma pp.unspecified Perna musselsMUS1Perni pp.giant file shellAMA1Perni pp.unspecified Perna musselsMUS1CephalopodaSSQ1Sepiolada (bohtai) squids)SepioladaSSQ1Sepioladae spp.bobtail squidIRM1Teuthoidae (squids)Cetopoteuthis spp.squidOPO1Tamingia spp.squidOPO11OrychoteuthidaeOPO111OrychoteuthidaeOPO111OnychoteuthidaeOPO111Onychoteuthidaewarry squidMRQ101Onychoteuthidaewarry squidMRQ101Onychoteuthidaewarry squidVSQ121Onychoteuthidaeunspecified ommustrephidOMQ11Notondarus solaniiSloan's atrow squidTSQ433Teuthorenta pellucidasquidCHQ131Notondarus solaniiSloan's atrow squidTSQ43Crance atropsOcco111OretopouthidaeoctopusOC11Notondarus solaniiSloan's atrow squidTSQ431Cranceledone spp.octopusOCO<				
Acesta manigiant file shellAMA1Mytilidaeunspecified Perna musselsMUS1Pertinidae (scallops)VKI1CephalopodaSepiolida (lobbatil squid)SSQ1Sepiolida (lobbatil squid)SSQ1Sepiolida (lobbatil squid)SSQ1Sepiolida (lobbatil squid)SSQ1Sepiolida (lobbatil squid)SQQ1Teuthoidea (squids)Octopoteuthidae0POOctopoteuthidae0Copoteuthidae0POOnychoteuthidae0PO1Onychoteuthidae0PO1Onychoteuthidae0PO1Onychoteuthidae0PO1Onychoteuthidae0PO1Onychoteuthidae0PO1Onychoteuthidae0PO1Onychoteuthidae0PO1Onychoteuthidae0PO1Onychoteuthidae0PO1Onychoteuthidae0PO1Onychoteuthidae0PO1Onychoteuthidae0PO1Ontorodaras slaantiiSloans arrow squidMQNotodaras slaantiiSloans arrow squidNOSOpishoteuthis spp.unspecified cranchiidCHQOrtopodiornes0PI2Incirate octopus)0PO1Opishoteuthis spp.deepwater octopusOPOOpishoteuthis spp.deepwater octopus0PIOpishoteuthis spp.deepwater octopus0PIOpishoteuthiae-2 <td>Scientific name</td> <td>Common name</td> <td>Species</td> <td>Occ.</td>	Scientific name	Common name	Species	Occ.
Acesta manigiant file shellAMA1Mytilidaeunspecified Perna musselsMUS1Pertinidae (scallops)VKI1CephalopodaSepiolida (lobbatil squid)SSQ1Sepiolida (lobbatil squid)SSQ1Sepiolida (lobbatil squid)SSQ1Sepiolida (lobbatil squid)SSQ1Sepiolida (lobbatil squid)SQQ1Teuthoidea (squids)Octopoteuthidae0POOctopoteuthidae0Copoteuthidae0POOnychoteuthidae0PO1Onychoteuthidae0PO1Onychoteuthidae0PO1Onychoteuthidae0PO1Onychoteuthidae0PO1Onychoteuthidae0PO1Onychoteuthidae0PO1Onychoteuthidae0PO1Onychoteuthidae0PO1Onychoteuthidae0PO1Onychoteuthidae0PO1Onychoteuthidae0PO1Onychoteuthidae0PO1Ontorodaras slaantiiSloans arrow squidMQNotodaras slaantiiSloans arrow squidNOSOpishoteuthis spp.unspecified cranchiidCHQOrtopodiornes0PI2Incirate octopus)0PO1Opishoteuthis spp.deepwater octopusOPOOpishoteuthis spp.deepwater octopus0PIOpishoteuthis spp.deepwater octopus0PIOpishoteuthiae-2 <td>Limidae</td> <td></td> <td></td> <td></td>	Limidae			
Mytildae Nytildae MUS 1 Perna sp. unspecified Perna mussels MUS 1 Pernia sp. VKI 1 Cephalopoda Sepiolaridae Sepiolaridae Sepiolaridae Sepiolaridae bobtail squid SSQ 1 Sepiolaridae bobtail squid IRM 1 Cocopoteuthis maoria bobtail squid IRM 1 Touthoidea (squids) Occopoteuthis gsp. squid OPO 1 Taningia sp. squid MUQ 52 Oryboani means warty squid MIQ 52 Oryboani means warty squid MRQ 16 Pholidoteuthidae mary squid MRQ 16 Pholidoteuthidae unspecified ommastrephid OMQ 1 Mottordants sloani Sloan's arrow squid VSQ 12 Ommastrephidae unspecified oranchiid CHQ 13 Cranchidae unspecified o		giant file shell	АМА	1
Perma sp.unspecified Perna musselsMUS1Pectinidae (callops)Veprichlamys kiwaensisVKI1CephalopodaSepiolida (bobtail squids)Sepiolida (bobtail squids)SSQ1Sepiolida (bobtail squids)Sepiolida (bobtail squid)IRM1Sepiolida (bobtail squid)SSQ11Sepiolida (bobtail squid)SQU11Sepiolida (squids)OCOpoleuthis maoriabobtail squidTDQ1Octopoleuthis maoriasquidOPO11Taningia spp.squidOPO11Onychoteuthidaemarty squidMRQ16Pholidoteuthidaewarty squidMRQ16Pholidoteuthidaeunspecified ommastrephidOMQ1Ommastrephidaeunspecified ommastrephidOMQ1Onmastrephidaeunspecified crachidCHQ13Todarodes filippovaeTodarodes squidTSQ43Cranchidaeunspecified crachidCHQ13Teathovenia pellucidasquidCHQ13CotopolitomesOCO12Opisthoteuthidaeunspecified crachidCHQ14OpishoteuthidaeoctopusOPI2Indirate octopus)OPI22Opishoteuthidaeunspecified crachidCHQ1Opishoteuthidaeunspecified sea spiderVAM1Polycheataunspecified sea spiderPVC1Phylindocidaquill w		Shant file shell		1
Pectinidae (scallops) Verprichlanopada Sepiolala (bobtail squids) Sepioladae spp. bobtail squid SSQ 1 Sepioladae spp. bobtail squid SSQ 1 Sepioladae spp. squid DPO 1 Taningia spp. squid OPO 1 Taningia spp. squid OPO 1 Taningia spp. squid OPO 1 Taningia spp. squid MIQ 52 Ortopoteuthidae Ortopoteuthidae Onykia ingens warty squid MIQ 52 Ortobati ingens warty squid MIQ 16 Pholidoteuthis spp. large red scaly squid PSQ 1 Histioteuthidae Tholidoteuthis spp. violet squid VSQ 12 Ommastrephidae unspecified onmastrephid OMQ 1 Notocidarus sloani Sloan's arrow squid TSQ 43 Todarodes filippovae Todarodes squid TSQ 43 Todarodes filippovae Todarodes squid TPE 1 Octopoditae Octopodiae Cirrate i cortopus OPI 2 Granchidae Opisthoteuthidae Opisthoteuthidae Opisthoteuthidae Opisthoteuthidae Opisthoteuthidae Opisthoteuthidae Opisthoteuthidae District with agp. automastrephid OMQ 1 TPE 1 Octopodi Cirrate octopus OPI 2 Outopudi agp. automastrephid OMQ 1 TPE 1 Octopodi Cirrate octopus OPI 2 Outopudi agp. automastrephid OMQ 1 Pythotocitae Ortopudi agp. automastrephidae CPI 2 Namyyromorpha Vampire squid VAM 1 Pythotocida Aphroditidae Aphroditida squi warpire squid VAM 1 Pythotocida Aphroditida spp. sea mouse ADT 1 Pythotocida (DPC) 1 Decordoparachiata Phocoyemata (DPC) 1 Pythotocida (DPC) 1 Decordoparachiata Phocoyemata (DPC) 1 Pythotocida (DPC) 1 Pythotocida (DPC) 1 Pythotocida (DPC) 1 Pythotocida (DPC) 1 Pythotocida (DPC) 1 Py	-	unspecified Perna mussels	MUS	1
CephalopodaSepiolaticaSepiolatidaeSepiolatidaeSepiolatidaeStoloteuthis maoriabobtail squidRM1Teuthoidae (squids)OctopoteuthidaeOctopoteuthidaeOctopoteuthidaeOrtopoteuthidaeOrtopoteuthidaeOrtopoteuthidaeOnykai mgenswarty squidMRQ16Pholidoteuthis spp.squidStatisticOnykai mgenswarty squidMRQ16PholidoteuthidaePholidoteuthidaePholidoteuthidaeInstroeuthis spp.violet squidVSQ12Ommastrephidaeunspecified ormastrephidOdarodes filippovaeTodarodes squidTodarodes guidTrathovenia pellucidasquidTrathovenia pellucidasquidTrata (cirrate octopus)OctopodaCorpous spp.OctopodaCraneledone spp.deepwater octopusOpisthoteuthidaeOrgunorphiaVampyroteuthids ipp.LunicidaeSupproteuthidaeSpp.SpilaeSpilaeSpilaeSpilaeCotopus spp.Octopus spp.VampyroteuthidaeSupproteuthidaePolychaetaEunicidaEunicidaEunicidaEunicidaEunicida </td <td></td> <td>•</td> <td></td> <td></td>		•		
Sepiadariidae Sepiadariidae Sepiadariidae spioladied spp.bobtail squidSSQ1Sepiadariidae Sepiadariidae Stoloteuthis maaria Octopoteuthis spp.bobtail squidIRM1Teuthoidea (squids) Octopoteuthidae Onychoteuthidae Onychoteuthidae Onychoteuthidae Onychoteuthidae Onychoteuthidae Onychoteuthidae Onychoteuthidae Onychoteuthidae Onychoteuthidae Onychoteuthidae Onychoteuthidae Onychoteuthidae Onychoteuthidae Onychoteuthidae Onychoteuthidae Onychoteuthidae Onychoteuthidae Onychoteuthidae Onychoteuthidae Onista ingenswarty squidMIQ52Onostopia Pholidaceuthis spp.large red scaly squidPSQ1Histoteuthidae (violet squids) Histoteuthidae (violet squids) Onmastrephidaviolet squidVSQ12Onmastrephidae Uoteutarus sloanii Otactodarus sloanii Otactodae squidVSQ12Nototodarus sloanii Otactodae squidVSQ13Teuthowenia pellucida SquidsquidTPE1Octopodi Graneledone spp.deepwater octopusOPI2Incirnat (incirrate octopus) Opisthoteuthidae Vampyroteuthidae Vampyroteuthidae Vampyroteuthidae Vampyroteuthidae Vampyroteuthidae Vampyroteuthidie spp.Eunice sea wormEUN2Polychaeta Eunice spp.Eunice sea wormEUN22Phylidocida Aphroditidae Aphroditidae Denoinae Denoinae Denoinae Aphroditidae Aphroditidaeunspecified sea spiderPYC1Prestecea Ciripedia (tornacles) Malacostraca Denoinae Denoinaeunspeci	Veprichlamys kiwaensis		VKI	1
Sepialariidaebobtail squidSSQ1Sepiolaidea spp.bobtail squidIRM1Teuthoidea (squids)OPO1OctopoteuthidaeCortopoteuthidae0POOrtopoteuthidae0PO1Onykai ingenswarty squidMIQOnykai ingenswarty squidMRQPholidoteuthidae1Onykai ingenswarty squidMRQPholidoteuthidae1Pholidoteuthidae1Omykai ingenswarty squidPSQPholidoteuthidae1Pholidoteuthidae1Pholidoteuthidae1Pholidoteuthidae1Onykai ingensviolet squidVSQ12OmmastrephidaeNOSPholidoteuthis spp.violet squidNOS13Todarodes filippovaeTodarodes squidTSQ14Stoinea sloaniiSloan's arrow squidNOS15Todarodes squidTSQ43Cranchiidaenospecified cranchiidCHQ13Teuthovenia pellucidasquidTPE13Catopoda11Cetopoda12Cirate octopus)OCO1OctopusOCO1Vampyroteuthidae02Onjskhoteuthis infernalisvampire squidVAMVampyroteuthidae1Vampyroteuthidae1Vampyroteuthidae2Aphroditidae2Aphroditidae1Aphroditidae<				
Sepiolaidea spp.bobtail squidSSQ1SepiolaideaSSQ1Stoloteuthis maariabobtail squidIRM1Teuthoidea (squids)OCtopoteuthis spp.squidOPO1Ornshia ingenswarty squidMIQ52Onychoceuthiamarty squidMIQ52Onychoceuthiawarty squidMIQ52Onychoceuthiawarty squidMIQ52Onychoceuthiawarty squidMIQ16Pholidoteuthidaeunspecified ommastrephidOMQ1Mistoteuthiaeunspecified cranchiidCHQ13Touthowenia pellucidasquidTSQ43Cranchidaeunspecified cranchiidCHQ13Teuthowenia pellucidasquidTPE1OctopodaOpisthoteuthis spp.umbrella octopusOPI2Incitrat (cirrate octopus)OpisthoteuthiaSpp.12Opisthoteuthidaeumbrella octopusOCO7Octopodidaecirrate spp.deepwater octopusDWO7Octopodidaewarpyroeuthis infernalisvampire squidVAM1PolychaetaEunicotaemaire squidVAM1Polychaetasea mouseADT11Polychaetaean mouseADT11Polychaetaunspecified sea spiderPYC11Polychaetacomolea spi.sea mouseADT1Portodida spp.sea mouseAD				
SepioidaeIRMIStoloteuthis maoriabobtail squidIRMITeuthoidea (squids)OPO1Cortopoteuthis pp.squidTDQ1Onykai ingenswarty squidMIQ52Onykai ingenswarty squidMRQ16Pholidoteuthis pp.large red scaly squidPSQ1Histioreuthidaeviolet squids)Violet squidVSQ12Ommastrephidaeunspecified ommastrephidOMQ1Notoodarus sloaniiSloan's arrow squidNOS53Todarodes filippovaeTodarodes squidTSQ43Cranchidaeunspecified cranchidCHQ13Teuthowenia pellucidasquidTPE1OctopodiformesOpisthoteuthisOPI2Incitrate octopus)OpisthoteuthisOPI2Incitrate octopus)OpushtoteuthisDWO7OctopodideGraneledone spp.deepwater octopusDWOOraboteuthis spp.umbrella octopusOCO1VampyronorphaVAM11PolychaetaEunicidaEunice sea wormEUN2Incitrate spp.Sea mouseADT1Polychaetaunspecified sea spiderPYC1Phyclodocidaquill wormHTU2Phyclodocidaganger sea mouseADT1Phycogonidaunspecified sea spiderPYC1Profesioneuthizaeunspecified sea spiderPYC1				
Stoloneuhis maoriabobtail squidIRM1Teuthoidea (squids)Octopoteuthis spp.squidOPO1Octopoteuthis app.squidTDQ1OnychoteuthidaeMIQ527OnychoteuthidaeWarty squidMRQ16PholidoteuthidaeVSQ1PholidoteuthidaeVSQ12Onmasterphidaeunspecified onmastrephidOMQ1Nototodarus sloaniiSloan's arrow squidNOS53Todarodarus sloaniiSloan's arrow squidTSQ43Cranchiidaeunspecified oranchiidCHQ13Teuthowenia pellucidasquidTPE1OctopodirmesOPI2CotopodiaeGirrata (cirrate octopus)OPI2Opisthoteuthidaeumbrella octopusOPI2Incirrata (cirrate octopus)octopusOCO1Opisthoteuthidaeumbrella octopusOV7OctopodiaeGraneledone spp.deepwater octopusOCOGraneledone spp.octopusOCO1Vampyroteuthidaeunite squidVAM1PolychaetaEunicidaEunicida2Eunicidaeguill wormHTU2Phylodocidaguill wormHTU2Phylodocidaguill wormHTU2Phylodocidaphroditia spp.sea mouseADT1Pyenogonidaunspecified barnaclesBRN1Dendrobranchitat/Plocoyemata <td></td> <td>bobtail squid</td> <td>SSQ</td> <td>1</td>		bobtail squid	SSQ	1
Teuthoidea (squids) Octopoteuthidae Octopoteuthidae Octopoteuthidae Onykia ingenssquidOPO1Tamingia spp. Onykia ingenssquidMIQ52Or robsoniwarty squidMIQ52Or robsoniwarty squidMRQ16Pholidoteuthidae Pholidoteuthidae (violet squids)PSQ1Histioteuthidae (violet squids)unspecified ommastrephidOMQ1Histioteuthidae (violet squids)unspecified ommastrephidOMQ1Motorodarus sloaniiSloan's arrow squidNOS53Todarodes filippovaeTodarodes squidTSQ43Cranchildaeunspecified cranchildCHQ13Teuthovenia pellucidasquidTPE1Octopodiformes OctopodaCirrata (cirrate octopus)OPI2Incirrata (incirrate octopus)OPI21Opishoteuthidae Vampyronerphavampire squidVAM1Vanpyroteuthidae Hyalinoecia tubicola Aphroditidae Aphroditidaequill wormHTU2Phylolocida Aphroditide Malacostracasea mouseADT1Pyenogonidaunspecified sea spiderPYC1Crustacca Cirripedia (barnacles)unspecified barnaclesBRN1Malacostraca Deudrobranchitat/Pleocyemataunspecified prawnNAT1	-	habtail aguid	IDM	1
OctopotenthidaesquidOPO1 Tamingi spp.OrychoteuthidaeTDQ1 TDQOnychoteuthidaeMIQ52 OrobsoniOnykia ingenswarty squidMIQ52 OrobsoniOnykia ingenswarty squidMRQ16PholidoteuthidaePholidoteuthidaePSQ1Histioteuthidaeviolet squidVSQ12Ommasterphidaeunspecified ommastrephidOMQ1Nototodarus sloaniiSloan's arrow squidNOS53Todarodes filiprovaeTodarodes squidTSQ43Cranchildaeunspecified cranchildCHQ13Teuthowenia pellucidasquidTPE1OctopolaCranchildCHQ13Cranchildaeunspecified cranchildCHQ13OrightoteuthidaeoctopusOPI2Incirrata (irrate octopus)OctopusOPI2Incirrata (incirrate octopus)octopusOCO1Vampyroteuthidaevampire squidVAM1PolychaetaEunicidaEunice sea wormEUN2Complidaequill wormHTU2Phylolocidaquill wormHTU2Phylolocidasea mouseADT1Phylolocidaunspecified barnaclesBRN1Dudotidaepyrceunspecified barnaclesBRN1Dudotidaeunspecified barnaclesBRN1Phylolocytaaunspecified barnaclesBRN		bobtali squid	IKIVI	1
Octopoteuthis spp.squidOPO1Taningia spp.squidTDQ1OnychoteuthidaeMRQ16OnychoteuthidaeMRQ16PholidoteuthidaePSQ1PholidoteuthidaePSQ1PholidoteuthidaeNaty squidVSQ12Ommastrephidaeunspecified ommastrephidONQ1Nototodarus sloaniiSloanis arrow squidNOS53Todarodes filippovaeTodarodes squidTSQ43Cranchidaeunspecified canchidCHQ13Teuthowenia pellucidasquidTPE1OctopodiaCirrate octopus)OPI2OctopodiaGranelidaeOPI2Incirrata (cirrate octopus)OCO1OctopodiaGraneledaeDWO7Octopus spp.octopusOPI2Incirrata (incirrate octopus)OCO1VampyroteuthidaeVAM1PolychaetaEunice sea wormEUN2Conuphidaequill wormHTU2PhylolocidaAphroditia spp.sea mouseADT1Phycogonidaunspecified sea spiderPYC1Crustaceaunspecified sea spiderPYC1Dualidaeunspecified barnaclesBRN1Dualidaeunspecified barnaclesBRN1Dualidaeunspecified barnaclesBRN1Dualidaeunspecified barnaclesBRN1<				
Taningia spp.squidTDQ1Onykia ingenswarty squidMIQ52Onykia ingenswarty squidMRQ16PholidoteuthiapholidoteuthiaPSQ1Histioteuthiamrg.large red scaly squidPSQ1Histioteuthis spp.uspecified ommastrephidOMQ1Nototodarus sloaniiSloan's arrow squidNOS53Todarodes filippovaeTodarodes squidTSQ43Cranchiidaeunspecified cranchiidCHQ13Teuthowenia pellucidasquidTPE1OctopodiCirrate octopus)Opisthoteuthis spp.umbrella octopusOpisthoteuthidaeoctopusOPI2Incirrate (cirrate octopus)octopusOCO1VampyroteuthidaeoctopusOCO1Vampyroteuthis infernalisvampire squidVAM1PolychaetaEunicidaquill wormHTU2Phyllodocidaquill wormHTU2Phyllodocidaquill wormHTU2PhyllodocidaphroditidaeAphrodita spp.1Pycnogonidaunspecified sa spiderPYC1Crustaceamrice sa spiderPYC1Pycnogonidaunspecified barnaclesBRN1Dual colspical (barnacles)unspecified barnaclesBRN1Pycnogonidaunspecified prawnNAT1		sauid	OPO	1
OnychoteuthidaeNIQ52Or, obsoniwarty squidMIQ52Or, obsoniwarty squidMIQ16PholidoteuthidaePSQ1Histioteuthidae (violet squids)unspecified onmastrephidOMQ1Histioteuthidaeunspecified onmastrephidOMQ1Ommastrephidaeunspecified onmastrephidOMQ1Nototodarus sloaniiSloan's arrow squidNOS53Todarodes filippovaeTodarodes squidTSQ43Cranchiidaeunspecified cranchiidCHQ13Teuthowenia pellucidasquidTPE1OctopodaCirrate (irrate octopus)OPI2Incirrata (incirrate octopus)OCO1OpisthoteuthidaeoctopusOCO1VampyronorphavampyronorphaVAM1Vampyronorphavampire squidVAM1Polychaetaguil wormHTU2Phyllodocidaquil wormHTU2Phyloidaeaphroditidaeaphroditidae1Phyloidaeunspecified sca spiderPYC1Pycnogonidaunspecified sca spiderPYC1Pycnogonidaunspecified sca spiderPYC1Pycnogonidaunspecified sca spiderPYC1DendrobranchiataPleocyemataunspecified barnaclesBRN1DendrobranchiataPleocyemataunspecified prawnNAT1		-		
Onykia ingenswarty squidMIQ52O. robsoniwarty squidMRQ16Pholidoteuthis spp.large red scaly squidPSQ1Histioteuthidaeunspecified ommastrephidOMQ1Martin Standardes filippovaeTodarodes squidTSQ43Cranchiidaeunspecified ommastrephidOMQ1Notoodarus sloaniiSloan's arrow squidTSQ43Cranchiidaeunspecified cranchiidCHQ13Teuthovenia pellucidasquidTPE1OctopodiformesOctopodiCirrate octopus)OPI2Opisthoteuthis spp.umbrella octopusOPI2Opisthoteuthidaeumbrella octopusOVO7OctopodidaeoctopusOCO1VampyroteuthidaevampyroteuthidaeVAM1PolychaetasquidVAM1Polychaetagrane squidVAM1Polychaetaquill wormHTU2Onuphidaequill wormHTU2OnuphidaeaphroditidaeAphroditidae1Pycnogonidaunspecified barnaclesBRN1Malacostracaunspecified barnaclesBRN1Dadacostracaunspecified barnaclesBRN1		-4		-
O. robsoniwary squidMRQ16PholidoteuthidaePSQ1Histioteuthidae (violet squids)arge red scaly squidPSQ1Histioteuthidae (violet squids)violet squidVSQ12Ormmastrephidaeunspecified ommastrephidOMQ1Notoodarus sloaniiSloan's arrow squidNOS53Todarodes filippovaeTodarodes squidCHQ13Teuthowenia pellucidasquidTPE1OctopodiaCirrata (cirrate octopus)OPI2OpisthoteuthidaeOpisthoteuthidaeOPI2Incirrata (cirrate octopus)OCO12OctopodiaGraneledne spp.deepwater octopusDWO7OctopodiaOctopus spp.octopusOCO1VampyroteuthidaevampyroteuthidaeVAM1PolychaetaEunice sea wormEUN2Nampyroteuthidaequill wormHTU2Phylidocidaquill wormHTU2Aphroditidaequill wormHTU2PhylidocidaAphroditidaeADT1Pycnogonidaunspecified barnaclesBRN1MalacostracaDuspecified barnaclesBRN1Malacostracaunspecified prawnNAT1		warty squid	MIQ	52
Pholidoteuthis spp.large red scaly squidPSQ1Histioteuthidae (violet squids)violet squidVSQ12Ommastrephidaeunspecified ommastrephidOMQ1Nototodarus sloaniiSloan's arrow squidNOS53Todarodes filippovaeTodarodes squidTSQ43Cranchiidaeunspecified cranchiidCHQ13Teuthowenia pellucidasquidTPE1OctopodaOctopodaTPE1OctopodaOristhoteuthidaeOPI2Incirrata (cirrate octopus)umbrella octopusOPI2Incirrata (incirrate octopus)octopusOCO1VampyronerphaVampyroteuthidaeVAM1Vampyroteuthidaevampire squidVAM1Polychaetaeunice sea wormEUN2Couphidaequill wormHTU2Phylolocidaquill wormHTU2OnuphidaeaphroditidaeAphroditidae1Poychaetaunspecified sea spiderPYC1Eunicidaeauill wormEUN2CrustaceaaphroditidaeADT1Pycnogonidaunspecified barnaclesBRN1MalacostracaDendrobanchiata/Pleocyemataunspecified prawnNAT1		• •	MRQ	16
Histioteuthidae (violet squids)violet squidVSQ12Ornmastrephidaeunspecified ommastrephidOMQ1Nototodarus sloaniiSloan's arrow squidNOS53Todarodes filippovaeTodarodes squidTSQ43Cranchiidaeunspecified cranchiidCHQ13Teuthowenia pellucidasquidTPE1OctopodiformesCirrata (cirrate octopus)Opisthoteuthiae0PI2OrishoteuthiaeOpisthoteuthiaeOPI2OricopadiaeGraneledone spp.deepwater octopusOVO1OctopodiaeOctopus spp.octopusOCO1VampyroteuthidaeVAM11PolychaetaEunicidaeEunice sea wormEUN2Onuphidaequill wormHTU2Phyllodocidaquill wormHTU2Phyllodocidasea mouseADT1Pycnogonidaunspecified sea spiderPYC1Crustaceaunspecified sea spiderPYC1CrustaceaDunsecified barnaclesBRN1Malacostracaunspecified barnaclesBRN1	Pholidoteuthidae			
Histioteuthis spp.violet squidVSQ12Ommastrephidaeunspecified ommastrephidOMQ1Nototodarus sloaniiSloan's arrow squidNOS53Todarodes filippovaeTodarodes squidTSQ43Cranchiidaeunspecified cranchiidCHQ13Teuthowenia pelucidasquidTPE1OctopodiformesOctopodiformes01OctopodiformesOpisthoteuthia spp.umbrella octopusOPI2Incirrata (cirrate octopus)octopusOCO1OpisthoteuthidaeoctopusOCO1Vampyromorphavampire squidVAM1PolychaetaEunicidaeUuil wormHTU2Eunicidaquill wormHTU2Phyllodocidasea mouseADT1Pycnogonidaunspecified sea spiderPYC1Crustaceaunspecified sea spiderPYC1Crustaceaunspecified barnaclesBRN1Malacostracaunspecified barnaclesBRN1		large red scaly squid	PSQ	1
Ommastrephidaeunspecified ommastrephidOMQ1Notorodarus sloaniiSloan's arrow squidNOS53Todarodes filippovaeTodarodes squidTSQ43Cranchiidaeunspecified cranchiidCHQ13Teuthowenia pellucidasquidTPE1OctopodiformesOctopodaTPE1OctopodaCirrata (cirrate octopus)OPI2Incirrata (incirrate octopus)umbrella octopusOPI2Incirrata (incirrate octopus)deepwater octopusDWO7OctopodidaeoctopusOCO1Graneledone spp.octopusOCO1Vampyromorphavampire squidVAM1PolychaetaEunicidauill wormHTU2Onuphidaequill wormHTU2Aphroditia spp.sea mouseADT1Pycnogonidaunspecified sea spiderPYC1Crustaceaunspecified sea spiderPYC1Crustaceaunspecified barnaclesBRN1Malacostracaunspecified prawnNAT1				
Nototodarus sloaniiSloan's arrow squidNOS53Todarodes filippovaeTodarodes squidTSQ43Cranchiidaeunspecified cranchiidCHQ13Teuthowenia pellucidasquidTPE1OctopodiformesCirrata (cirrate octopus)OpisthoteuthidaeOPI2Incirrata (cirrate octopus)umbrella octopusOPI2Incirrata (incirrate octopus)deepwater octopusDWO7OctopodidaeoctopusOCO1Vampyroteuthidaevampire squidVAM1Polychaetavampire squidVAM1Polychaetaeunice sea wormEUN2Onuplidaequill wormHTU2Aphrodita spp.sea mouseADT1Pycnogonidaunspecified sea spiderPYC1Crustaceaunspecified barnaclesBRN1Diates and to prove the spp.unspecified barnaclesBRN1Pictaceaunspecified prawnNAT1			-	
Todarodes filippovaeTodarodes squidTSQ43Cranchiidaeunspecified cranchiidCHQ13Teuthowenia pellucidasquidTPE1OctopodiformesOctopodaTPE1OctopodaOristhoteuthiaePisthoteuthiaePisthoteuthiaeOpisthoteuthidaeOpisthoteuthias spp.umbrella octopusOPI2Incirrata (cirrate octopus)octopodidaeOVO7OctopodidaeOCO1VampyromorphaVampyromorphaVampyroteuthidaevampire squidVAM1PolychaetaEunicidaeEunice sea wormEUN2Onuphidaequill wormHTU2PhylodocidaAphroditidaeSea mouseADT1Pycnogonidaunspecified sea spiderPYC1Crustaceaunspecified barnaclesBRN1Malacostracaunspecified prawnNAT1			-	
Cranchiidaeunspecified cranchiidCHQ13Teuthowenia pellucidasquidTPE1OctopodiformesOctopodiaTPE1OctopodaCirrata (cirrate octopus)Opisthoteuthidae0PI2Disthoteuthidaeopisthoteuthis spp.umbrella octopusOPI2Incirrata (incirrate octopus)OctopodidaeOVO7OctopodidaeoctopusDWO7OctopodidaeoctopusOCO1Vampyromorphavampyroteuthis infermalisvampire squidVAM1PolychaetaEunicidaeEunice spp.EUN2Onuphidaequill wormHTU2PhyllodocidaAphroditidaeADT1Pycnogonidaunspecified sea spiderPYC1CrustaceaEunice sa wormBRN1Duspecified sea spiderPYC1Crustaceaunspecified barnaclesBRN1Dendrobranchiata/Pleocyemataunspecified prawnNAT1				
Teuthowenia pellucidasquidTPE1Octopodi Cirrata (cirrate octopus) Opisthoteuthidae Opisthoteuthidae Opisthoteuthidae Opisthoteuthidae Opisthoteuthidae Graneledone spp.umbrella octopusOPI2Incirrata (incirrate octopus) Octopodidae Graneledone spp.deepwater octopus 			-	
Octopodi Octopoda Cirrata (cirrate octopus) Opisthoteuthidae Opisthoteuthidae Spishoteuthidae Spishoteuthidae oraneledone spp.umbrella octopus octopusOPI2Incirrata (incirrate octopus) Octopodidae Graneledone spp.deepwater octopus octopusDWO7Octopus spp.octopusOCO1Vampyromorpha Vampyroteuthidae Vampyroteuthis infernalisvampire squidVAM1Polychaeta Eunicidae Eunicidae Hyalinoecia tubicola Aphroditidae Aphroditidaeguill wormEUN2Phylodocida Aphroditidae Malacostraca Dendrobranchiat/Pleocyemataunspecified barnaclesBRN1Crustacea Cirripedia (barnacles)unspecified prawnNAT1		-		
Octopoda Cirrata (cirrate octopus) Opisthoteuthidae Opisthoteuthis spp.umbrella octopusOPI2Incirrata (incirrate octopus) Octopodidae Graneledone spp.deepwater octopusDWO7Octopodidae Graneledone spp.octopusDWO7Octopus spp.octopusOCO1Vampyronorpha Vampyroteuthis infernalisvampire squidVAM1Polychaeta Eunicidae Eunicidae Eunicidae Aphroditidae Aphroditidae Aphroditidae Aphroditidae Malacostraca Dendrobranchiata/Pleocyemataguill wormEUN2Crustacea Cirripedia (barnacles)sea mouseADT1Pycnogonidaunspecified barnaclesBRN1		squid	II L	1
Cirrata (cirrate octopus) Opisthoteuthidae Opisthoteuthidae Opisthoteuthis spp.umbrella octopusOPI2Incirrata (incirrate octopus) Octopolidae Graneledone spp.deepwater octopusDWO7Octopus spp.octopusOCO1Vampyromorpha Vampyroteuthis infernalisvampire squidVAM1Polychaeta Eunicidae Eunicidae Eunice spp.Eunice sea wormEUN2Onuphidae Hyalinoecia tubicolaquill wormHTU2Phyroditidae Aphroditida Cirripedia (barnacles)sea mouseADT1Crustacea Cirripedia (barnacles)unspecified barnaclesBRN1Malacostraca Dendrobranchiata/Pleocyemataunspecified prawnNAT1				
Opisthoteuthidae Opisthoteuthis spp.umbrella octopusOPI2Incirrata (incirrate octopus) Octopodidae Graneledone spp.deepwater octopusDWO7Octopus spp.octopusOCO1Vampyromorpha Vampyroteuthidae Vampyroteuthis infernalisvampire squidVAM1Polychaeta Eunicidae Eunicidae Hyalinoecia tubicola Aphroditidae Aphroditida spp.Eunice sea wormEUN2Onuphidae Aphroditidae Aphroditidae Crustacea Cirripedia (barnacles)sea mouseADT1Pycnogonidaunspecified barnaclesPYC1Crustacea Cirripedia (barnacles)unspecified barnaclesBRN1	-			
Opisthoteuthis spp.umbrella octopusOPI2Incirrata (incirrate octopus)deepwater octopusDWO7Octopodidaedeepwater octopusDWO7Octopus spp.octopusOCO1VampyromorphaVampyroteuthidaeVAM1PolychaetaEunicidaeEunicidae2Eunicidaequill wormEUN2Onuphidaequill wormHTU2PhylolocidaAphrodita spp.sea mouseADT1Pycnogonidaunspecified sea spiderPYC1CrustaceaCirripedia (barnacles)unspecified barnaclesBRN1MalacostracapawnNAT1				
OctopodidaeGraneledone spp. octopus spp.deepwater octopusDWO7Octopus spp.octopusOCO1Vampyromorpha Vampyroteuthidae Vampyroteuthidae Vampyroteuthiaevampire squidVAM1Polychaeta Eunicida Eunicidae Eunice spp.Eunice sea wormEUN2Onuphidae Hyalinoecia tubicola Aphroditidae Aphroditidaequill wormHTU2Phyllodocida Aphroditidae Cirtipedia (barnacles)sea mouseADT1Crustacea Cirripedia (barnacles)unspecified barnaclesBRN1Malacostraca Dendrobranchiata/Pleocyemataunspecified prawnNAT1	Opisthoteuthis spp.	umbrella octopus	OPI	2
Graneledone spp.deepwater octopusDWO7Octopus spp.octopusOCO1Vampyromorpha Vampyroteuthidae Vampyroteuthis infernalisvampire squidVAM1Polychaeta Eunicida Eunicidae <i>Eunice spp.</i> Eunice sea wormEUN2Onuphidae Hyalinoecia tubicola Aphroditidae Aphroditidae Mahacostraca Dendrobranchiata/Pleocyematasea mouseADT1Pycnogonidaunspecified barnacles unspecified prawnNAT1				
Octopus spp.octopusOCO1Vampyromorpha Vampyroteuthidae Vampyroteuthia infernalisvampire squidVAM1Polychaeta Eunicida Eunicidae Eunice spp.Eunice sea wormEUN2Onuphidae Hyalinoecia tubicola Aphroditiae Aphroditiae Aphroditia spp.Eunice sea wormEUN2Onuphidae Hyalinoecia tubicola Aphroditiaequil wormHTU2Phyllodocida Aphroditia spp.sea mouseADT1Pycnogonidaunspecified sea spiderPYC1Crustacea Cirripedia (barnacles) Malacostraca Dendrobranchiata/Pleocyemataunspecified prawnNAT1	-			
Vampyromorpha Vampyroteuthidae Vampyroteuthis infernalisvampire squidVAM1Polychaeta Eunicida Eunicidae <i>Eunice</i> spp.Eunice sea wormEUN2Onuphidae Hyalinoecia tubicola Aphroditidae Aphroditidae Aphroditidae Crustaceaquill wormHTU2Pycnogonidaunspecified sea spiderPYC1Crustacea Cirripedia (barnacles) Malacostraca Dendrobranchiata/Pleocyemataunspecified prawnNAT1				
Vampyroteuthis infernalisvampire squidVAM1Polychaeta Eunicida Eunicidae <i>Eunice</i> spp.Eunice sea wormEUN2Onuphidae <i>Hyalinoecia tubicola</i> quill wormHTU2Phyllodocida Aphroditidae <i>Aphrodita</i> spp.sea mouseADT1Pycnogonidaunspecified sea spiderPYC1Crustacea Cirripedia (barnacles)unspecified barnaclesBRN1Malacostraca Dendrobranchiata/Pleocyemataunspecified prawnNAT1		octopus	OCO	1
Vampyroteuthis infernalisvampire squidVAM1Polychaeta Eunicida Eunicidae <i>Eunice</i> spp.Eunice sea wormEUN2Onuphidae Hyalinoecia tubicola Phyllodocida Aphroditidae <i>Aphrodita</i> spp.guill wormHTU2Phyllodocida Aphroditia spp.sea mouseADT1Pycnogonidaunspecified sea spiderPYC1Crustacea Cirripedia (barnacles) Malacostraca Dendrobranchiata/Pleocyemataunspecified prawnNAT1				
Polychaeta Eunicida Eunicidae Eunice spp.Eunice sea wormEUN2Onuphidae Hyalinoecia tubicolaquill wormHTU2Phyllodocida Aphroditidae Aphrodita spp.sea mouseADT1Pycnogonidaunspecified sea spiderPYC1Crustacea Cirripedia (barnacles) Malacostraca Dendrobranchiata/Pleocyemataunspecified prawnNAT1		vompiro squid	VAM	1
Eunicida Eunicidae Eunice spp.Eunice sea wormEUN2Onuphidae Hyalinoecia tubicolaquill wormHTU2Phyllodocida Aphroditidae Aphroditidae Crustaceasea mouseADT1Pycnogonidaunspecified sea spiderPYC1Crustacea Cirripedia (barnacles) Malacostraca Dendrobranchiata/Pleocyemataunspecified prawnNAT1	vampyroleunis infernalis	vampre squid	V AIVI	1
Eunicida Eunicidae Eunice spp.Eunice sea wormEUN2Onuphidae Hyalinoecia tubicolaquill wormHTU2Phyllodocida Aphroditidae Aphroditidae Crustaceasea mouseADT1Pycnogonidaunspecified sea spiderPYC1Crustacea Cirripedia (barnacles) Malacostraca Dendrobranchiata/Pleocyemataunspecified prawnNAT1	Polychaeta			
Eunicidae Eunice spp.Eunice sea wormEUN2Onuphidae Hyalinoecia tubicolaquill wormHTU2Phyllodocida Aphroditidae Aphrodita spp.sea mouseADT1Pycnogonidaunspecified sea spiderPYC1Crustacea Cirripedia (barnacles) Malacostraca Dendrobranchiata/Pleocyemataunspecified prawnNAT1				
Onuphidae Hyalinoecia tubicolaquill wormHTU2Phyllodocida Aphroditidae Aphroditia spp.sea mouseADT1Pycnogonidaunspecified sea spiderPYC1Crustacea Cirripedia (barnacles) Malacostraca Dendrobranchiata/Pleocyemataunspecified prawnNAT1				
Hyalinoecia tubicolaquill wormHTU2PhyllodocidaAphroditidaeAphroditidaeADT1Aphrodita spp.sea mouseADT1Pycnogonidaunspecified sea spiderPYC1Crustaceaunspecified barnaclesBRN1Malacostracaunspecified prawnNAT1	Eunice spp.	Eunice sea worm	EUN	2
PhyllodocidaAphroditidaeAphroditidaeAphroditidaeAphroditida spp.sea mouseADT1Pycnogonidaunspecified sea spiderPYC1CrustaceaCirripedia (barnacles)unspecified barnaclesBRNMalacostracaDendrobranchiata/Pleocyemataunspecified prawnNAT1				
Aphroditidae Aphrodita spp.sea mouseADT1Pycnogonidaunspecified sea spiderPYC1Crustacea Cirripedia (barnacles) Malacostraca Dendrobranchiata/Pleocyemataunspecified prawnBRN1		quill worm	HTU	2
Aphrodita spp.sea mouseADT1Pycnogonidaunspecified sea spiderPYC1Crustacea Cirripedia (barnacles)unspecified barnaclesBRN1Malacostraca Dendrobranchiata/Pleocyemataunspecified prawnNAT1				
Pycnogonidaunspecified sea spiderPYC1Crustaceaunspecified barnaclesBRN1Cirripedia (barnacles)unspecified barnaclesBRN1Malacostracaunspecified prawnNAT1				
CrustaceaCirripedia (barnacles)unspecified barnaclesBRN1MalacostracaDendrobranchiata/Pleocyemataunspecified prawnNAT1	Aphrodita spp.	sea mouse	ADT	1
Cirripedia (barnacles)unspecified barnaclesBRN1Malacostraca1Dendrobranchiata/Pleocyemataunspecified prawnNAT1	Pycnogonida	unspecified sea spider	РҮС	1
Cirripedia (barnacles)unspecified barnaclesBRN1Malacostraca1Dendrobranchiata/Pleocyemataunspecified prawnNAT1	Crustacea			
Malacostracaunspecified prawnNAT1		unspecified barnacles	BRN	1
Dendrobranchiata/Pleocyemata unspecified prawn NAT 1				-
Dendrobranchiata	Dendrobranchiata/Pleocyemata	unspecified prawn	NAT	1
	Dendrobranchiata			

Scientific name	Common name	Species	Occ.
Aristeidae			
Aristaeopsis edwardsiana	scarlet prawn	PED	1
Austropenaeus nitidus	deepwater prawn	ANI	2
Pleocyemata			
Caridea			
Campylonotidae			
Campylonotus rathbunae	sabre prawn	CAM	2
Oplophoridae			10
Acanthephyra spp.	SubAntarctic ruby prawn	ACA	12
Notostomus auriculatus	scarlet prawn	NAU	1
Oplophorus novaezeelandiae	deepwater prawn	ONO	1
<i>Oplophorus</i> spp.	deepwater prawn	OPP	3
Pasiphaeidae	deenwater prown	PBA	10
Pasiphaea barnardi Nematocarcinidae	deepwater prawn	PDA	10
Lipkius holthuisi	omogo provin	LHO	34
Achelata	omega prawn	LIIO	54
Astacidea			
Nephropidae (clawed lobsters)			
Metanephrops challengeri	scampi	SCI	27
Palinura	Seampi	501	27
Polychelidae			
Polycheles spp.	deepsea blind lobster	PLY	7
Anomura	F		
Galatheoidea			
Chirostylidae (chirostylid squat lobsters)			
Gastroptychus spp.	squat lobster	GAT	1
Uroptychus spp.	squat lobster	URP	1
Galatheidae (galatheid squat lobsters)	•		
Munida gregaria	squat lobster	MGA	1
Lithodidae (king crabs)			
Lithodes aotearoa	New Zealand king crab	LAO	1
L. robertsoni	Robertson's king crab	LRO	1
Neolithodes brodiei	Brodie's king crab	NEB	3
Paralomis zealandica	Prickly king crab	PZE	1
Paguroidea (unspecified hermit crabs)		PAG	1
Lophogastrida			
Gnathophausiidae			
Neognathophausia ingens	giant red mysid	NEI	3
Brachyura (true crabs)			
Atelecyclidae	fuille diamh	TEA	1
Trichopeltarion fantasticum	frilled crab	TFA	1
Goneplacidae	two opined and	CVI	4
Pycnoplax victoriensis Homolidae	two-spined crab	CVI	4
Dagnaudus petterdi	antlered crab	DAP	7
Inachidae	antiered crab	DAF	/
Vitjazmaia latidactyla	deepsea spider crab	VIT	5
Majidae (spider crabs)	deepsed spherer erab	VII	5
Teratomaia richardsoni	spiny masking crab	SMK	6
Portunidae (swimming crabs)	spiny musking crub	SIVIL	0
Ovalipes molleri	swimming crab	OVM	1
	6		
Echinodermata			
Crinoidea (sea lilies and feather stars)			
Comatulida (feather stars)	unspecified feather stars	CMT	2
Asteroidea (starfish)			

Scientific name	Common name	Species	Occ.
Asteriidae			
Cosmasterias dyscrita	cat's-foot star	CDY	1
Pseudechinaster rubens	starfish	PRU	6
Sclerasterias mollis	cross-fish	SMO	6
Astropectinidae			
Dipsacaster magnificus	magnificent sea-star	DMG	27
Plutonaster knoxi	abyssal star	PKN	21
Proserpinaster neozelanicus	starfish	PNE	12
Psilaster acuminatus	geometric star	PSI	29
Benthopectinidae			
Benthopecten spp.	starfish	BES	1
Brisingida	unspecified Brisingid	BRG	19
Goniasteridae			3
Hippasteria phrygiana	trojan starfish	HTR	8
Lithosoma novaezelandiae	rock star	LNV	8
Mediaster sladeni	starfish	MSL	4
Pillsburiaster aoteanus	starfish	PAO	1
Solasteridae			
Crossaster multispinus	sun star	CJA	6
Solaster torulatus	chubby sun-star	SOT	9
Pterasteridae			
Diplopteraster sp.	starfish	DPP	2
Zoroasteridae			
Zoroaster spp.	rat-tail star	ZOR	42
Ophiuroidea (basket and brittle stars)	unspecified brittle star		
Ophiuridae			
Ophiomusium lymani	brittle star	OLY	4
Euryalina (basket stars)			
Gorgonocephalidae		COD	-
Gorgonocephalus spp.	Gorgon's head basket stars	GOR	7
Echinoidea (sea urchins)			
Regularia			
Cidaridae		CDA	2
Goniocidaris parasol	parasol urchin	GPA	3
Histiocidaridae		IIIC	2
<i>Histiocidaris</i> spp.	or an a sife of Tame O'Sharton anabia	HIS	2
Echinothuriidae/Phormosomatidae	unspecified Tam O'Shanter urchin	TAM	35 9
Echinothuriidae (Tam O'Shanters) Phormosomatidae	unspecified Tam O'Shanter urchin	ECT	9
		PHM	4
Phormosoma spp. Echinidae		FIIM	4
Dermechinus horridus	deepsea urchin	DHO	3
Gracilechinus multidentatus	deepsea kina	GRM	21
Spatangoida (heart urchins)	ucepsea kina	UNI	21
Spatangidae			
Spatangus multispinus	purple-heart urchin	SPT	13
Holothuroidea	unspecified holothurian	HTH	5
Aspidochirotida	unspectifica noiotifultan	11111	5
Synallactidae			
Bathyplotes sp.	sea cucumber	BAM	2
Pseudostichopus mollis	sea cucumber	PMO	30
Elasipodida	sea eucumber	1 1010	50
Laetmogonidae			
Laetmogone sp.	sea cucumber	LAG	6
Pannychia moseleyi	sea cucumber	PAM	3
Psychropotidae	Jeu eucumber	1 / 1171	5
Benthodytes sp.	sea cucumber	BTD	6
······································		2	5

Scientific name	Common name	Species	Occ.
Agnatha (jawless fishes) Myxinidae: hagfishes			
Eptatretus cirrhatus	hagfish	HAG	2
Chondrichthyes (cartilaginous fishes)			
Chlamydoselachidae: frilled sharks			
Chlamydoselachus anguineus Hexanchidae: cow sharks	frill shark	FRS	1
Hexanchus griseus	sixgill shark	HEX	2
Notorynchus cepedianus	broadnose sevengill shark	SEV	1
Squalidae: dogfishes			
Squalus acanthias	spiny dogfish	SPD	65
S. griffini Centrophoridae: gulper sharks	northern spiny dogfish	NSD	2
Centrophorus squamosus	leafscale gulper shark	CSQ	16
Deania calcea	shovelnose spiny dogfish	SND	51
Etmopteridae: lantern sharks			
Etmopterus granulosus	Baxter's dogfish	ETB	37
<i>E. lucifer</i> Somniosidae: sleeper sharks	lucifer dogfish	ETL	41
Centroselachus crepidater	longnose velvet dogfish	СҮР	42
Centroscymnus owstoni	Owston's dogfish	CYO	27
Scymnodon plunketi	Plunket's shark	PLS	7
Oxynotidae: rough sharks			0
Oxynotus bruniensis Dalatiidae: kitefin sharks	prickly dogfish	PDG	8
Dalatias licha	seal shark	BSH	22
Scyliorhinidae: cat sharks		2011	
Apristurus ampliceps	roundfin catshark	AAM	2
A. exsanguis	New Zealand catshark	AEX	15
A. garracki	Garrick's catshark	AGK	7
A. melanoasper Bythaelurus dawsoni	fleshynose catshark Dawson's catshark	AML DCS	3 2
Cephaloscyllium isabella	carpet shark	CAR	1
Triakidae: smoothhounds	emper shan	0. III	-
Galeorhinus galeus	school shark	SCH	11
Torpedinidae: electric rays	1		2
<i>Tetronarce nobiliana</i> Narkidae: blind electric rays	electric ray	ERA	2
Typhlonarke spp.	numbfish	BER	1
Arhynchobatidae: softnose skates			-
Bathraja shuntovi	longnosed deepsea skate	PSK	5
Brochiraja asperula	smooth deepsea skate	BTA	11
<i>B. spinifera</i> Rajidae: skates	prickly deepsea skate	BTS	14
Amblyraja hyperborea	deepwater spiny (Arctic) skate	DSK	2
Dipturus innominatus	smooth skate	SSK	26
Zearaja nasuta	rough skate	RSK	2
Chimaeridae: chimaeras, ghost sharks		~~~~	
Chimaera carophila Hudrolagua hamigi	brown chimaera	CHP GSP	3 69
Hydrolagus bemisi H. homonycteris	pale ghost shark black ghost shark	HYB	3
H. novaezealandiae	dark ghost shark	GSH	50
H. trolli	pointynose blue ghost shark	HYP	1
Rhinochimaeridae: longnosed chimaeras			
Harriotta raleighana Phinochimaera pagifiga	longnose spookfish Pacific spookfish	LCH RCH	55 25
Rhinochimaera pacifica	Pacific spookfish	NC11	23

Scientific name	Common name	Species	Occ.
Osteichthyes (bony fishes) Halosauridae: halosaurs			
Halosaurus pectoralis	common halosaur	HPE	5
Notocanthidae: spiny eels			
Notacanthus chemnitzi	giant spineback	NOC	1
N. sexspinis	spineback	SBK	60
Synaphobranchidae: cutthroat eels			
Diastobranchus capensis	basketwork eel	BEE	28
Simenchelys parasitica	snubnosed eel	SNE	3
Nemichthyidae: snipe eels	unspecified snipe eel	NEX	1
Nemichthys curvirostris	slender snipe eel	NCU	1
Congridae: conger eels	unspecified conger eel	CON	1
Bassanago bulbiceps	swollenhead conger	SCO	28
B. hirsutus	hairy conger	HCO	26
Serrivomeridae: sawtooth eels			
Serrivomer spp.	sawtooth eel	SAW	2
Gonorynchidae: sandfish			
Gonorynchus forsteri	sandfishes	GFO	3
Argentinidae: silversides			
Argentina elongata	silverside	SSI	45
Bathylagidae: deepsea smelts			
Bathylagichthys parini	Parin's deepsea smelt	BPA	3
Bathylagus spp.	deepsea smelts	DSS	2
Melanolagus bericoides	bigscale blacksmelt	MEB	10
Platytroctidae: tubeshoulders			
Persparsia kopua	tubeshoulder	PER	4
Alepocephalidae: slickheads			
Alepocephalus antipodianus	smallscaled brown slickhead	SSM	19
A. australis	bigscaled brown slickhead	SBI	18
Xenodermichthys copei	black slickhead	BSL	16
Diplophidae: portholefishes			
Diplophos rebainsi	twin light dragonfishes	DRB	2
Gonostomatidae: bristlemouths			
Sigmops bathyphilus	black lightfish	GBT	1
Sternoptychidae: hatchetfishes			
Argyropelecus gigas	giant hatchetfish	AGI	6
Photichthyidae: lighthouse fishes			
Phosichthys argenteus	lighthouse fish	PHO	27
Stomiidae: barbeled dragonfishes			
Chauliodus sloani	viperfish	CHA	12
Idiacanthus atlanticus	black dragonfish	IAT	10
Malacosteus australis	southern loosejaw	MAU	2
Melanostomias spp.	scaleless black dragonfishes	MEN	1
Astronesthidae: snaggletooths		DAN	
Borostomias antarcticus		BAN	2
B. mononema		BMO	1
Notosudidae: waryfishes		CDI	1
Scopelosaurus spp.	·····	SPL	1
Paralepididae: barracudinas	unspecified barracudinas	PAL	1
Macroparalepis macrogeneion	headband barracudina	MMA	1
Magnisudis prionosa	giant barracudina	BCA	1
Alepisauridae: lancetfishes	about an out a diamont figh		1
Alepisaurus brevirostris Mustophidaa: lantamfishas	shortsnouted lancetfish	ABR LAN	1 5
Myctophidae: lanternfishes	unspecified lanternfish dana lanternfish	DDA	3 2
Diaphus danae Gymnoscopelus piabilis	southern blacktip lanternfish	GYP	2 1
Gymnoscopelus plabitis Gymnoscopelus spp.	lanternfish	GYM	3
Lampadena speculigera	mirror lanternfish	LSP	3
Δαπραιτια specializera	minor function	LOI	5

Scientific name	Common name	Species	Occ.
Myctophidae: lanternfishes (cont.)	unspecified lanternfish	LAN	7
Lampanyctus intricarius	intricate lanternfish	LIT	8
Lampanyctus spp.	lanternfish	LPA	1
Symbolophorus boops	bogue lanternfish	SBP	1
Trachipteridae: dealfishes		521	-
Trachipterus trachypterus	dealfish	DEA	1
Moridae: morid cods	dealitish		1
Antimora rostrata	violet cod	VCO	7
Guttigadus nudicephalus	nakedhead codling	MOD	1
Halargyreus spp.	'Johnson's' cod	HJO	47
	small-headed cod	SMC	
Lepidion microcephalus L. schmidti		LPS	15 1
L. schman Mora moro	Schmidt's cod		
	ribaldo	RIB	34
Notophycis marginata	dwarf cod	DCO	3
Pseudophycis bachus	red cod	RCO	29
Tripterophycis gilchristi	grenadier cod	GRC	1
Gadidae: true cods		(DW)	
Micromesistius australis	southern blue whiting	SBW	14
Chaunacidae: seatoads			
Chaunax russatus	red frogmouth	CHX	1
Melanocetidae: humpback anglerfishes			
Melanocetus johnsonii	Humpback anglerfish	MEJ	1
Ceratiidae: seadevils			
Cryptopsaras couesii	warty seadevil	SDE	2
Merlucciidae: hakes			
Macruronus novaezelandiae	hoki	HOK	112
Merluccius australis	hake	HAK	43
Ophidiidae: cuskeels			
Genypterus blacodes	ling	LIN	78
Bythitidae: viviparous brotulas	C		
Cataetyx niki	brown brotula	CAN	1
Macrouridae: rattails, grenadiers			-
Coelorinchus acanthiger	spotty faced rattail	CTH	5
C. aspercephalus	oblique banded rattail	CAS	50
C. biclinozonalis	two saddle rattail	CBI	13
C. bollonsi	Bollons' rattail	CBO	79
C. fasciatus	banded rattail	CFA	40
C. innotabilis	notable rattail	CIN	40
C. kaiyomaru	Kaiyomaru rattail	CKA	42
-	Mahia rattail	CMA	
C. matamua		CMA CDX	19
C. maurofasciatus	dark banded rattail		1
C. oliverianus	Oliver's rattail	COL	51
C. parvifasciatus	small banded rattail	CCX	13
C. trachycarus	roughhead rattail	CHY	13
Coryphaenoides dossenus	humpback rattail	CBA	6
C. murrayi	Murray's rattail	CMU	3
C. serrulatus	serrulate rattail	CSE	29
C. striaturus	striate rattail	CTR	1
C. subserrulatus	four-rayed rattail	CSU	37
Gadomus aoteanus	filamentous rattail	GAO	3
Lepidorhynchus denticulatus	javelinfish	JAV	103
Lucigadus nigromaculatus	blackspot rattail	VNI	13
Macrourus carinatus	ridge scaled rattail	MCA	23
Mesobius antipodum	black javelinfish	BJA	14
Nezumia namatahi	squashedfaced rattail	NNA	2
Trachonurus gagates	velvet rattail	TRX	3
Trachyrincus aphyodes	white rattail	WHX	30
T. longirostris	unicorn rattail	WHR	1
0			

Carapidae: pearlfishes Echiodon cryomarguritesmessmate fishECR2Regalecidae: carifshesribbonfishAGR1Melamphatick: bigscalefishesblack bigscalefishSNO1Turchichthylokae: roughies, slimchcads orange roughyORH29H. mediterraneussilver roughyORH29H. mediterraneussilver roughyRHY77Diretmidae: disclishesDIS4Diretmidae: argenteusdisclishDIS4Diretmidae: disclishesDIS4Diretmidae: fangtoothANO2Berycide: alfonsinoslongfinned beryxBYD1Berycide: alfonsinosaffonsinoBYS31Melamphatidae: bigscalefishesunspecified bigscalefishMPH4Zeidae: choresaffonsinoBYS31Caprominus abbreviatuscapro daryCDO11Cytus novaezealondulaesilver dorySDO9C. raversiblack oreoBOE20A. verracostawarty oreoWOE8Neoroptany fishesCaps corpionifishBBE70Nonpogen lillieicrested bellowsfishBBE70Nonpogen lillieicrested bellowsfishBBE70Nonpogen lillieicrested bellowsfishBBE70Nonpogen lillieicrested bellowsfishBBE70Nonpogen lillieicrested bellowsfishBBE70Nonpogen lillieicrested bellowsfishBBE70 <th>Scientific name</th> <th>Common name</th> <th>Species</th> <th>Occ.</th>	Scientific name	Common name	Species	Occ.
Regatecidae: oarfishes' Agrostichtys parkeri No nordenskjoldiribbonfishAGR1Melamphaidae: bigscalelishes Sion nordenskjoldiblack bigscalelishSNO1Trachichtyldie: roughies, slimeheads Hopolstethus atlanticusorange roughyORH29H. moditerareneus Diretmukae: discribescommon roughySRH24Pararachichthys traillicommon roughySRF24Diretmukae: discribesdiscribehDiretmukae: StristhDIS4Diretmukae: discribesdiscribehSFN1Anoplogastret cornutafangtoothANO2Berycidea: diffosinosBrys311MelaebasalfonsinoBYS31Melamphaidae: bigscalefishesunspecified bigscalefishMPH4Zeidae: coriescapro doryCDO11Cytits novacealandhaesilver dorySDO9C. roversitlookdown doryLDO81Zenopsis nebulosamitror doryWDO81Zenopsis nebulosasmooth oreoSOR31Macrothamphosidae: stepfishescape scorpionfishCBEContriscops lumerovusbande bellowsfishBBE70Notopogo lilleicrested bellowsfishBBE70Notopogo lilleicrested bellowsfishCBE4Scorpaenidae: scorpionfishescape scorpionfishTBS7Congiopodius eutopaeciluspigfishPIG1Trajidae: gurmadsscaly gurmardSCG <td< td=""><td></td><td></td><td>EGD</td><td>2</td></td<>			EGD	2
Âcrostichthys parkeriribbonfishAGR1Melamphaidae: bigscalefishesblack bigscalefishSNO1Trachichthyidae: roughies, slimeheadsorange roughyORH29Hoptosterus autonicasorange roughyORH29Herratrachichthys traillicommon roughySRH24Paratrachichthys traillicommon roughySRH24Paratrachichthys parinispinyfinSFN1Anoplogastricae: fangtoothanoplogastricae: fangtoothANO2Beryx decadacryluslongfinned beryxBYD1Beryx decadacryluslongfinned beryxBYD1Beryx decadacryluslongfinned beryxBYD1Cytan ovaezealandiaesilver doryCDO11Cytan ovaezealandiaesilver dorySDO9C traversilookdown doryLDO81Zenopsin bedusamirror doryMDO81Zenopsin bedusamirror doryWOE8Neocytus rhomboidalisspiky oreoSOR31Pseudocytus maculatussmooth oreoSSO41Macrohamphosidae: sinjefishescersted bellowsfishBBE70Noropogon lilleicrested bellowsfishBBE70Noropogon lilleicrested bellowsfishCBE4Scorpaenidae: scorpointshescersted bellowsfishCBE4Individue inglifishescersted bellowsfishCBE4Contropolus leucopacciluspifishPIG1		messmate fish	ECR	2
Melamphaidae bigscalefishes SNO 1 Sin ordenskjoldi black bigscalefish SNO 1 Trachichthyjdae: roughies, slimeheads orange roughy ORH 29 H. mediterraneus silver roughy SRH 24 Paratrachichthys trailli common roughy RH 24 Paratrachichthys trailli common roughy RH 24 Diretmidae: (sisfishes discfish DIS 4 Diretmidae: (sisfishes ginyfin SFN 1 Anoplogaster conuta fangtooth ANO 2 Berycidie: alfonsinos BYD 1 1 Berycidie: alfonsinos BYS 31 Malenzhens alfonsino BYS 31 Malexitis: bigscalefishes unspecified bigscalefish MPH 4 Zeidae: dores alfonsino BYS 31 Carproninus abbreviatus capro dory CDO 11 Cyttus novaezealandiae silver dory SDO 9 C. raversi lookdown dory LDO 81 Zenopsis nebulosa miror	•	ribbonfich		1
Sic nordenskjolitiblack bigscalefishSNO1Trachichthyldae: roughs, slimeheadsorange roughyORH29H. mediterraneussilver roughySRH24Pararacchichthys traillicommon roughyRHY7Diretmichthys parinispinyfinSFN1Anoplogastriae: fangtoothangtoothANO2Beryx decadactyluslongfinned beryxBYD1Beryx decadactyluslongfinned beryxBYD1Beryx decadactyluslongfinned beryxBYD1Relamphadiae: bigscalefishsalfonsinoBYS31Melamphadiae: bigscalefishsalfonsinoBYS31Melamphadiae: bigscalefishsalfonsinoBYS31Zenopsis nebulosamirror doryCDO11Cytus novacealantilaesilver dorySDO9C raversilookdown doryLDO81Zenopsis nebulosamirror doryMDO2Allocyttus nigerblack oreoBOE20A. verncosuswarty oreoSOR31Peudocytus maculantsspiky oreoSOR31Peudocytus maculantsspifshCEE4Scorpaenidae: stopperistesCape scorpionfishCEE4Consigoodus leucopaeciluspifshCEE4Peudocytus maculantsscaly gurnardSCG9Polichthyloida: synstemcape scorpionfishCEE4Macorbanambosidae: stopperistescape scorpionfish<		ribbonfish	AGR	1
Trachichthyidae: roughies, slimeheadsORH29Hoplostethus atlanticusorange roughyORH24Paratrachichthys traitlicommon roughyRHY7Diretmidae: disclishisDIS4Diretmidae: disclishisdisclishDIS4Diretmidae: disclishisdisclishiSFN1Anoplogastridae: fangtoothangtoothANO2Beryx decadaeryluslongfinned beryxBYD1Beryx decadaeryluslongfinned beryxBYS31Melamphaidae: bigscalefishesunspecified bigscalefishMPH4Zeidae: dories		block biggoolofish	SNO	1
Hoplosiethus atlanticusorange roughyORH29H. mediterraneussilver roughySRH24Paratrachichhys traillicommon roughyRHY7Diretmicuta discfishesDiretmichthys parinispinyfinSFN1Anoplogaster cornutafangtoothANO2Berycidae: alfonsinosBerycidae: alfonsinosBYD1Berscidae: bigscalefishesunspecified bigscalefishMPHValidae: doriesalfonsinoBYSCaprominus abbreviatuscapro doryCDO11Cytrus novaezealandiaesilver dorySDO9C traversilookdown doryLDO81Zenopsis nebulosamirror doryMDO2Orcosomatidae: orcosmitror doryMDO2Allocyttus nacudatusspiky orcoSOR31Pseudocyttus maculatusspiky orcoSOR31Pseudocytus maculatussmooth orcoSOR31Pseudocytus maculatusbancother126Proglichthylae: ghorthhateadsPfD26Proglichthy		black bigscalensh	SNO	1
H. mediterraneus silver roughy SRH 24 Paratrachichthys trailli common roughy RHY 7 Diretmidae: disclishes userfish DIS 4 Diretmidae: disclishes spinyfin SFN 1 Anoplogastridae: fagtooth fagtooth ANO 2 Beryx decadactylus longfinned beryx BYD 1 B. splendens alfonsino BYS 31 Melamphaidae: bigscalefishes unspecified bigscalefish MPH 4 Zeidae: dories capronimus abbreviatus capro dory CDO 11 C. traversi lookdown dory LDO 81 Zeidae: dories 20 Alecyttus niger block creo BOE 20 20 Alecyttus niger block creo BOE 20 Alecyttus neuclutus smooth oreo SOG 31 Pseudocyttus merosus banded bellowsfish BBE 70 Notogopan lillici crested bellowsfish BBE 70 Notogopan lillici crested bellowsfish BBE 7 Congio		orango roughy	ОРЦ	20
Paratrachichthys traillicommon roughyRHY7DiretmichichtsdiscfishDIS4Diretmichthys parinispinyfinSFN1Anoplogaster cornutafangtoothANO2Berystidae: laitonsinosBerystidae: laitonsinoBYD1Berystidae: bigscalefishesunspecified bigscalefishMPH4Zeidae: doriescaproninuus abbreviatuscapro doryCDO11Cytus novaezealandiaesilver dorySDO9C traversilookdown doryLDO81Zenopsin sebulosamiror doryMDO81Zenopsin sebulosamiror doryMDO81Zenopsin sebulosawarty oreoWOE8Neocyttus niegerblack oreoBOE20A. verrucesuswarty oreoSOR31Nacrorhamphosidae: snipefishescrestel bellowsfishBBE70Notopogon lillieicrestel bellowsfishCBE4Scorpaenidae: sonpointishescrestel bellowsfishCBE4Consiopodisle ucopaeciluspigfishPIG1Trigifae: gurnardscape scorpionfishTRS7Congiopodisle ucopaeciluspigfishTOP16Contrididae: sonpoinfishescape scorpionfishTRS7Macronhamphosidae: sonpoinfishescape scorpionfishTRS7Congiopodisle ucopaeciluspigfishTOP16Contractus branescape scorpionfishTRS7Congr		· · ·	-	
Diretmidae: disclishesDiretmidae: disclishesDiretmidae: disclishesDiretmus argenteusdisclishDIS4Diretmiduthys parinispinyfinSFN1Anoplogastridae: fangtoothfangtoothANO2Berycidae: alfonsinosBerycidae: alfonsinooBYS31Melamphaidae: bigscalefishesunspecified bigscalefishMPH4Zeidae: doriesCaprominus abbreviatuscapro doryCDO11Cytus novaezealandiaesilver dorySDO9C. traversilookdown doryLDO81Zenopsis nebulosamitror doryMDO2Orcosomatidae: orcosmitror doryMDO2Allocytus nigerblack oreoBOE20A. verrucosuswarty oreoWOE8Neocytus rhomboidalisspiky oreoSOR31Pseudocytus maculatussmooth oreoSSO41Macrothamphosidae: sinpefishesCape scorpionfishTR7Congiopodak leucopaeciluspigfishPIG1Trigidae: gurandscape scorpionfishTOP16Congiopodus leucopaeciluspigfishPIG1Trigidae: gurandscortCOT1Anophrhulamos angustuspale toadfishTOP16Continculus nudusbonyskull toadfishTOD1Polychrolutidae: indifishesCOT1Nochyprichtys latusdark toadfishTrigidae: gurandsmarge perchOPE8 <t< td=""><td></td><td></td><td></td><td></td></t<>				
Diremus argenteusdisclishDIS4Diretmichthys parinispinyfinSFN1Anoplogaster cornutafagtoothANO2Berycidae: silonsinosalfonsinoBYS31Beryx decadactyluslongfinned beryxBYD1Baryx decadactyluslongfinned beryxBYD1Beryx decadactyluslongfinned beryxBYD1Beryx decadactyluslongfinned beryxBYD1Beryx decadactyluslongfinned beryxBYD1Melamphaidae: bigscalefishesunspecified bigscalefishMPH4Zeidae: doricsalfonsinoBYS31Carrominus abbreviatuscapro doryCDO11Cytrus novaezealandiaesilver dorySDO9C traversilookdown doryLDO81Zenopsis nebulosamirror doryMDO2Oreosomatidae: oreosmirror doryWOE8Neoropagn inbulosasmoot oreoSOR31Pseudocytus maculatussmoot oreoSOR31Macrothamphosidae: snipefishescreated bellowsfishBBE70Congiopodus encopaeciluspigfishCBE4Scorpaenidae: corpionfishesCape scorpionfishTRS7Congiopodus encopaeciluspigfishCGF26Polychrolutidae: basespigfishPIG1Trigidae: gurnardscape scorpionfishTRS7Congiopodus encopaeciluspigfishCOT1 <td>•</td> <td>common roughy</td> <td>KIII</td> <td>/</td>	•	common roughy	KIII	/
Direntichtlys parinispinyfinSFN1Anoplogastridae: fangtoothfangtoothANO2Beryx decadactyluslongfinned beryxBYD1Beryx decadactyluslongfinned beryxBYD1Beryx decadactylusunspecified bigscalefishMPH4Zeidae: doriescapromimus abbreviatuscapro doryCDO11Cyttus novaezealandiaesilver dorySDO9C. traversilookdown doryLDO81Zenopsis nebulosamirror doryMDO2Oreosomatidae: oreosmirror doryWOE8Allocyttus nigerblack oreoBOE20A. verrucosuswarty oreoSOR31Pseudocyttus naculatussmooth oreoSSO41Macrorhamphosidae: snipefishescentriscops humerosusbanded bellowsfishBBECongiopodu liteicrested bellowsfishCBE4Scorpaenidae: scorpionfishescap scorpionfish77Congiopodus leucopaeciluspigfishPIG1Triglidae: pigfishescorpi fishes126Congiopodus leucopaeciluspigfishTOP16Congiopodus leucopaeciluspale toaffishCOT1Nobythidae: itemperatebonyskull toaffishCOT1Neocytus nidesbonyskull toaffishCOT1Neophyrinchtys hatusdark toaffishCOT1Neophyrinchtys latusdark toaffishCOT1Neophy		discfish	DIS	4
Anoplogastridae: fangtooth Anoplogaster cornutafangtooth fangtoothANO2Beryx decadactyluslongfinned beryxBYD1Beryx decadactylusalfonsinoBYS31Melamphaidae: bigscalefishesunspecified bigscalefishMPH4Zeidae: doriesaffonsinoBYS31Capronimus abbreviatuscapro doryCDO11Cytrus novaezealandiaesilver dorySDO9C. traversilookdown doryLDO81Zenopsis nebulosamirror doryMDO2Oreosomatidae: oreosmiror doryMDO2Allocyttus nigerblack oreoBOE20A. verrucosuswarty oreoWOE8Neocyttus rhomboidalisspiky oreoSOR31Macrorhamphosidae: sinjefishescersted bellowsfishBBE70Congiopodillieicrested bellowsfishBBE70Notopogon lillieicrested bellowsfishBE4Scorpaenidae: scorpionfishesea perchSPE82Trachscorpia eschmeyeriCape scorpionfishTRS7Congiopodidae: gigfishescorpaenidaeiG9Hoplichthys haswellideepsea flatheadFHD26Psychrolutidae: toadfishDO11Previchtus macususpale toadfishTOP16Cornuclus mudusbonyskull toadfishCOT1NeoperandescorpareBAS1Polyprind hys latusdark to				
Anoplogaster corinitafangtoothANO2Beryxidae: alfonsinosBeryxBYD1Beryxidae: alfonsinosalfonsinoBYS31Melamphaidae: bigscalefishesunspecified bigscalefishMPH4Zeidae: doriesCaprominus abbreviatuscapro doryCDO11Cytus novaezealandiaesilver dorySDO9C. traversilookdown doryLDO81Zenopsis nebulosamirror doryMDO2Orceosomatidae: orcosHack oreoBOE20A. verrucosuswarty oreoWOE8Neocyttus nigerblack oreoBOE20A. verrucosuswarty oreoWOE8Neocyttus noigercrested bellowsfishBBE70Natorohamphosidae: singlefshescrested bellowsfishCBE4Scorpaenidae: scorpionfishescrested bellowsfishCBE4Helicolenus barathrisea perchSPE82Trachyscorpta eschmeyeriCape scorpionfishTRS7Congiopodiulae: pigfishesrest doutlishCOT1Nobophtiesbonyskull toadfishCOT1Neophyrinchtys latusdark toadfishCOT1Neophyrinchtys latusdark toadfishCOT1Neophyrinchtys latusdark toadfishCOT1Neophyrinchtys latusdark toadfishCOT1Neophyrinchtys latusdark toadfishCOT1Neophyrinchtys latusdark toa		spinyim	SIT	1
Berycidae: alfonsinos Iongfined beryx BYD 1 B. splendens alfonsino BYS 31 Melamphaidae: bigscalefishes unspecified bigscalefish MPH 4 Zeidae: dories caprominus abbreviatus capro dory CDO 11 Cytrus novaezealandiae silver dory SDO 9 C traversi lookdown dory LDO 81 Zenopsis nebulosa mirror dory MDO 2 Oreosomatidae: oreos MOC 80E 20 Allocytrus niger black oreo BOE 20 A verrucosus warty oreo WOE 8 Neocytrus mobioidais spiky oreo SOR 31 Macrothamphosidae: snipefishes Centriscops humerosus banded bellowsfish BBE 70 Notopogon lilliei crested bellowsfish CBE 4 4 Scorpaenidae: scorpionfishes Trachyscorpia eschmeyeri Cape scorpionfish TRS 7 Congiopodia leucopaecilus pigfish PIG 1 1 1 1 1 1 0 1		fangtooth	ANO	2
Beryx decadactyluslongfinned beryxBYD1B. splendensalfonsinoBYS31Melamphaldae: bigscalefishesunspecified bigscalefishMPH4Zeidae: doriescapro doryCDO11Cyttus novaezealandiaesilver dorySDO9C. traversilookdown doryLDO81Zenopsis nebulosamirror doryMDO2Oreosomatidae: oreosmirror doryWOE8Allocyttus nigerblack oreoBOE20A. verrucosuswarty oreoWOE8Neocyttus rhomboidalisspiky oreoSOR31Pseudocyttus maculatussmooth oreoSSO41Macrorhamphosidae: snipefishescertiscops humerosusbanded bellowsfishBBECongiopodulae: pigfishescreated bellowsfishBBE70Notopogon lillieicreated bellowsfishBBE70Congiopodulae: pigfishesCape scorpionfishTRS7Congiopodulae: pigfishesCape scorpionfishPIG1Trachyscorpia eschmeyeriCape scall gurnardSCG9Hoplichthys haswellideepsea flatheadFHD26Psychrolutae: toginshesmirror and scall gurnardCOT1Lepidourigla brachyopterascaly gurnardSCG9Hoplichthys latusdark toadfishTOD1Neophrynichthys latusdark toadfishTOD1Psychrolutae: timperate baseserop11 <t< td=""><td>1 0</td><td>lungtooth</td><td>71100</td><td>2</td></t<>	1 0	lungtooth	71100	2
B. splendens alfonsino BYS 31 Melamphaidae: bigscalefishes unspecified bigscalefish MPH 4 Zeidae: fories caprominus abbreviatus capro dory CDO 11 Cytus novaezealandiae silver dory SDO 9 C. traversi lookdown dory LDO 81 Zenopsis nebulosa mirror dory MDO 2 Oreosomatidae: oreos MICo:trus novaezealandiae silver dory SDO 9 Allocytius niger black oreo BOE 20 A. verrucosus warty oreo SOR 31 Neocytrus rhomboidalis spiky oreo SOR 31 Macrothamphosidae: snipefishes crested bellowsfish BBE 70 Notopogon lilliei crested bellowsfish BE 4 Scorpaenidae: scorpionfishes tersted bellowsfish BE 7 Congiopodius leucopacitus pigfish PIG 1 Triglidae: gurnards scaly gurnard SCG 9 Hoplichthyidae: thostflatheads HD 26 Polyprividue: thostaflisheads		longfinned beryy	BYD	1
Melamphaidae: bigscalefishsMPH4Zeidae: dories	2 2			
Zeidae: doriescapro doryCDO11Cyttus novaezealandiaesilver dorySDO9C. traversilookdown doryLDO81Zenopsis nebulosamirror doryMDO2Orceosomatidae: oreos2Allocyttus nigerblack oreoBOE20A. verracosuswarty oreoWOE8Neocytus rhomboidalisspiky oreoSOR31Pseudocyttus maculatussmooth oreoSSO41Macrothamphosidae: snipefishes2Centriscops humerosusbanded bellowsfishBBE70Notopogon lillieicrested bellowsfishCBE4Scorpaenidae: scorpionfishes2Helicolenus barathrisea perchSPE82Trachyscorpia eschmeyeriCape scorpionfishTRS7Congiopodus leucopaeciluspigfishPIG1Triglidae: gurnardsscaly gurnardSCG9Hoplichthys haswellideepsea flatheadFHD26Psychrolutidae: toadfishes1Ambophthalmos angustuspale toadfishTOP16Cottunculus nudusbonyskull toadfishTOD1Psychrolutes microporosblobfishPSY1Percichthylae: temperate basses2Polyprion americanusbass groperBAS1P. oxygeneioshapukuHAP9Serranidae: sea perchs, groperscange perch<				
Caprominus abbreviatuscapro doryCDO11Cyttus novaezealandiaesilver dorySDO9C. traversilookdown doryLDO81Zenopsis nebulosamirror doryMDO2Oreosomatidae: oreos		unspectified ofgseuteristi		
Cytus novaezealandiaesilver dorySDO9C. traversilookdown doryLDO81Zenopsis nebulosamirror doryMDO2Oreosomatidae: oreos2Allocyttus nigerblack oreoBOE20A. verucosuswarty oreoWOE8Neocyttus rhomboidalisspiky oreoSOR31Pseudocyttus maculatussmooth oreoSSO41Macrorhamphosidae: snipefishes77Centriscops humerosusbanded bellowsfishBBE70Notopogon lillieicrested bellowsfishCBE4Scorpaenidae: scorpionfishes77Helicolenus barathrisea perchSPE82Trachyscorpia eschmeyeriCape scorpionfishTRS7Congiopodus leucopaeciluspigfishPIG1Triglidae: gurnards11Lepidotrigla brachyopterascaly gurnardSCG9Hoplichthys haswellideepsea flatheadFHD26Psychrolutiae: toadfishes101Ambophthalmos angustuspale toadfishTOP16Cotunculus nudusbonyskull toadfishCOT1Neophrynichthys latusdark toadfishPSY1Percichtlyidae: temperate basses1Polyprion americanusbass groperBAS1P. oxygeneioshapukuHAP9Sermanidae: sea perches, gropersEpigonus denticulatus </td <td></td> <td>capro dory</td> <td>CDO</td> <td>11</td>		capro dory	CDO	11
Č. traversilookdown doryLDO81Zenopsis nebulosamirror doryMDO2Oreosomatidae: oreosAllocyttus nigerblack oreoBOE20A. verrucosuswarty oreoWOE8Neocyttus rhomboidalisspiky oreoSOR31Pseudocyttus maculatussmooth oreoSSO41Macrorhamphosidae: snipefishesCentriscops humerosusbanded bellowsfishBBE70Notopogon lillieicrested bellowsfishCBE4Scorpaenidae: scorpionfishesHelicolenus barathrisea perchSPE82Trachyscorpia eschmeyeriCape scorpionfishTRS7Congiopodus leucopaeciluspigfishPIG1Triglidae: gunards </td <td></td> <td></td> <td></td> <td></td>				
Zenopsis nebulosamirror doryMDO2Oreosomatidae: oreosAllocyttus nigerblack oreoBOE20Allocyttus nigerblack oreoBOE20Allocyttus nigerblack oreoWOE8Neocyttus rhomboidalisspiky oreoSOR31Pseudocyttus maculatussmooth oreoSSO41Macrorhamphosidae: snipefishesEntriscops humerosusbanded bellowsfishBBE70Notopogon lilleicrested bellowsfishCBE4Scorpaenidae: scorpionfishesE4Helicolenus barathrisea perchSPE82Trachyscorpia eschmeyeriCape scorpionfishTRS7Congiopodus leucopaeciluspigfishPIG1Triglidae: gurnardsCOT11Lepidotrigla brachyopterascaly gurnardSCG9Hoplichthyidae: ghostflatheadsHID26Psychrolutidae: ioadfishesTOP16Cottunculus nuduspale toadfishTOP16Cottunculus nudusbonyskull toadfishCOT1Neophrynichthys latuspale toadfishTOD1Psychrolutes microporosblobfishPSY1Percichthyidae: temperate basses9Polyprion americanusbass groperBAS1P. oxygeneioshapukuHAP9Serranidae: sea perches, gropersEst1Lepidoperca aurantiaorange perchOPE8				
Oreosonatidae: oreosBok oreoBOE20A. verrucosuswarty oreoWOE8Neocyttus rhomboidalisspiky oreoSOR31Pseudocyttus maculatussmooth oreoSSO41Macrorhamphosidae: snipefishesCentriscops humerosusbanded bellowsfishBBE70Notopogon lillieicrested bellowsfishCBE4Scorpaenidae: scorpionfishesHelicolenus barathrisea perchSPE82Trachyscorpia eschmeyeriCape scorpionfishTRS7Congiopodus leucopaeciluspigfishPIG1Triglidae: gumards </td <td></td> <td>•</td> <td></td> <td></td>		•		
Allocyttus nigerblack oreoBOE20A. verrucosuswarty oreoWOE8Neocyttus rhomboidalisspiky oreoSOR31Pseudocyttus maculatussmooth oreoSSO41Macrorhamphosidae: snipefishesCentriscops humerosusbanded bellowsfishBBE70Notopogon lillieicrested bellowsfishBBE70Scorpaenidae: scorpionfishesHelicolenus barathrisea perchSPE82Trachyscorpia eschmeyeriCape scorpionfishTRS7Congiopodus leucopaeciluspigfishPIG1Triglidae: gurnards </td <td></td> <td>million dory</td> <td></td> <td>-</td>		million dory		-
A. verrucosuswarty oreoWOE8Neocyttus rhomboidalisspiky oreoSOR31Pseudocyttus maculatussmooth oreoSSO41Macrorhamphosidae: snipefishesCentriscops humerosusbanded bellowsfishBBE70Notopogon illieicrested bellowsfishCBE4Scorpaenidae: scorpionfishesHelicolenus barathrisea perchSPE82Trachyscorpia eschmeyeriCape scorpionfishTRS7Congiopodus leucopaeciluspigfishPIG1Triglidae: gunardsLepidotrigla brachyopterascaly gurnardSCG9Hoplichthys haswellideepsea flatheadFHD26Psychrolutidae: toadfishes </td <td></td> <td>black oreo</td> <td>BOE</td> <td>20</td>		black oreo	BOE	20
Neocytus rhomboidalisspik oreoSOR31Pseudocytus maculatussmooth oreoSSO41Macrorhamphosidae: snipefishesCentriscops humerosusbanded bellowsfishBBE70Notopogon lillieicrested bellowsfishCBE4Scorpaenidae: scorpionfishesHelicolenus barathrisea perchSPE82Trachyscorpia eschmeyeriCape scorpionfishTRS7Congiopodida: pigfishes </td <td></td> <td></td> <td></td> <td></td>				
Pseudocytus maculatussmooth oreoSSO41Macrorhamphosidae: snipefishesEntriscops humerosusbanded bellowsfishBBE70Notopogon lillieicrested bellowsfishCBE4Scorpaenidae: scorpionfishesEntriscops humerosusbanded bellowsfishCBE4Melicolenus barathrisea perchSPE827Congiopodidae: pigfishesCape scorpionfishTRS7Congiopodus leucopaeciluspigfishPIG1Triglidae: gurnardsEcpidotrigla brachyopterascaly gurnardSCG9Hoplichthyidae: ghostflatheadsHabelos fishTOP16Moophynlichthys latuspale toadfishTOP16Contunculus nudusbonyskull toadfishCOT1Neophrynichthys latusdark toadfishTOD1Psychrolutiae: temperate bassesPSY1Percichthyidae: temperate bassespale variantifishPSY1Percichthyidae: deepwater cardinalfishesI9Serranidae: sea perches, gropersapukuHAP9Serranidae: deepwater cardinalfishesEpigonus denticulatuswhite cardinalfishEPD4E. lenimenbigeye cardinalfishEPL111E. machaerathin tongue cardinalfishEPM17E. robustusrobustusrobustus cardinalfishEPM17E. robustuscardinalfishEPM1717		•		
Macrorhamphosidae: snipefishesbanded bellowsfishBBE70Contriscops humerosusbanded bellowsfishCBE4Scorpaenidae: scorpionfishesCBE4Scorpaenidae: scorpionfishessea perchSPE82Trachyscorpia eschmeyeriCape scorpionfishTRS7Congiopodus leucopaeciluspigfishPIG1Trigidae: gurnards1Lepidotrigla brachyopterascaly gurnardSCG9Hoplichthyidae: gbostflatheads26Psychrolutidae: toadfishes26Psychrolutidae: toadfishes1Moophrynichthys latuspale toadfishTOP16Cottunculus nudusbonyskull toadfishCOT1Neophrynichthys latusdark toadfishTOD1Psychrolutidae: temperate bassesPSY1Percichthyidae: temperate basses9Serranidae: sea perches, gropersbass groperBAS1P. oxygeneioshapukuHAP99Serranidae: deepwater cardinalfishes11Epigonus denticulatuswhite cardinalfishEPD4Epigonus denticulatuswhite cardinalfishEPL111E. nachaerathin tongue cardinalfishEPM17E. relescopusdeepsea cardinalfishEPT17				
Centriscops humerosusbanded bellowsfishBBE70Notopogon lillieicrested bellowsfishCBE4Scorpaenidae: scorpionfishesHelicolenus barathrisea perchSPE82Trachyscorpia eschmeyeriCape scorpionfishTRS7Congiopodidae: pigfishes7Congiopodus leucopaeciluspigfishPIG1Triglidae: gurnards7Lepidotrigla brachyopterascaly gurnardSCG9Hoplichthyidae: ghostflatheads70Hoplichthys haswellideepsea flatheadFHD26Psychrolutidae: toadfishes70000Ambophthalmos angustuspale toadfishCOT1Neophrynichthys latusdark toadfishCOT1Neophrynichthys latusblobfishPSY1Percichthyidae: temperate basses8AS1P. oxygeneioshapukuHAP99Serranidae: sea perches, gropers8AS1Lepidoperca aurantiaorange perchOPE88Epigonidae: deepwater cardinalfishesEPD44E. lenimenbigeye cardinalfishEPD4E. lenimenbigeye cardinalfishEPM17E. robustusrobust cardinalfishERB88E. telescopusdeepsea cardinalfishEPT17				
Notopogon lillieicrested bellowsfishCBE4Scorpaenidae: scorpionfishessea perchSPE82Helicolenus barathrisea perchCape scorpionfishTRS7Congiopodus leucopaeciluspigfishPIG1Triglidae: gurnardsrachyopterascaly gurnardSCG9Hoplichthys dae: ghostflatheadsscaly gurnardSCG9Hoplichthys haswellideepsea flatheadFHD26Psychrolutiae: toadfishesrOP16Cottunculus nudusbonyskull toadfishCOT1Neophrynichthys latusdark toadfishTOD1Percichthyidae: temperate bassespage perchPSY1Percichthyidae: sea perches, gropersbass groperBAS1P. oxygeneioshapukuHAP99Serranidae: sea perches, groperscrange perchOPE8Epigonidae: deepwater cardinalfishesEPD44E. lenimenbigeye cardinalfishEPD4E. nonkaerathin tongue cardinalfishEPM17E. robustusrobustus cardinalfishERB8E. telescopusdeepsea cardinalfishEPT17		banded bellowsfish	BBE	70
Scorpanidae: scorpionfishesSea perchSPE82Trachyscorpia eschmeyeriCape scorpionfishTRS7Congiopodidae: pigfishespigfishPIG1Triglidae: gurnardspigfishPIG1Lepidotrigla brachyopterascaly gurnardSCG9Hoplichthyidae: ghostflatheads1Hoplichthys haswellideepsea flatheadFHD26Psychrolutidae: toadfishesTOP16Cottunculus nudusbonyskull toadfishCOT1Neophrynichthys latusdark toadfishTOD1Psychrolutes microporosblobfishPSY1Percichthyidae: temperate basses9Serranidae: sea perches, gropersbass groperBAS1Lepidopreca aurantiaorange perchOPE8Epigonus denticulatuswhite cardinalfishEPD4E, lenimenbigeye cardinalfishEPL11E, machaerathin tongue cardinalfishEPM17E, robustusrobust cardinalfishEPM17E, telescopusdeepsea cardinalfishEPT17			CBE	
Helicolenus barathrisea perchSPE82Trachyscorpia eschmeyeriCape scorpionfishTRS7Congiopodidae: pigfishes7Congiopodius leucopaeciluspigfishPIG1Triglidae: gurnards1Lepidotrigla brachyopterascaly gurnardSCG9Hoplichthyidae: ghostflatheads26Psychrolutidae: toadfishes26Psychrolutidae: toadfishes26Psychrolutidae: toadfishes26Psychrolutikae: toadfishes1Neophrynichthys latusbonyskull toadfishCOT1Neophrynichthys latusdark toadfishTOD1Psychrolutes microporosblobfishPSY1Percichthyidae: temperate basses1Polyprion americanusbass groperBAS1P. oxygeneioshapukuHAP9Serranidae: sea perches, gropers2Lepidoperca aurantiaorange perchOPE8Epigonidae: deepwater cardinalfishes1E. lenimenbigeye cardinalfishEPD4E. lenimenbigeye cardinalfishEPM17E. robustusrobust cardinalfishERB8E. telescopusdeepsea cardinalfishEPT17				
Trachyscorpia eschmeyeriCape scorpionfishTRS7Congiopodidae: pigfishespigfishPIG1Triglidae: gurnardsscaly gurnardSCG9Hoplichtrigla brachyopterascaly gurnardSCG9Hoplichthyidae: ghostflatheadsdeepsea flatheadFHD26Psychrolutidae: toadfishespale toadfishTOP16Cottunculus nudusbonyskull toadfishCOT1Neophrynichthys latusdark toadfishTOD1Psychrolutes microporosblobfishPSY1Percichthyidae: teaperate bassesbass groperBAS1P. oxygeneioshapukuHAP9Serranidae: sea perches, groperscrange perchOPE8Epigonus denticulatuswhite cardinalfishEPD4E. lenimenbigeye cardinalfishEPL11E. nachaerathin tongue cardinalfishEPM17E. robustusrobust cardinalfishERB8E. telescopusdeepsea cardinalfishEPT17		sea perch	SPE	82
Congiopodus leucopaeciluspigfishPIG1Triglidae: gurnardsLepidotrigla brachyopterascaly gurnardSCG9Hoplichthyidae: ghostflatheadsdeepsea flatheadFHD26Psychrolutidae: toadfishes26Ambophthalmos angustuspale toadfishTOP16Cottunculus nudusbonyskull toadfishCOT1Neophrynichthys latusdark toadfishTOD1Psychrolutes microporosblobfishPSY1Percichthyidae: temperate basses1P. oxygeneioshapukuHAP9Serranidae: sea perches, gropersLepidoperca aurantiaorange perchOPE8Epigonus denticulatuswhite cardinalfishEPD4E. lenimenbigeye cardinalfishEPL11E. machaerathin tongue cardinalfishEPM17E. robustusrobust cardinalfishERB8E. telescopusdeepsea cardinalfishEPT17	Trachyscorpia eschmeyeri		TRS	7
Triglidae: gurnardsSCG9Lepidotrigla brachyopterascaly gurnardSCG9Hoplichthyidae: ghostflatheadsHoplichthys haswellideepsea flatheadFHD26Psychrolutidae: toadfishespale toadfishTOP16Cottunculus nudusbonyskull toadfishCOT1Neophrynichthys latusdark toadfishTOD1Psychrolutes microporosblobfishPSY1Percichthyidae: temperate bassesbass groperBAS1P. oxygeneioshapukuHAP9Serranidae: sea perches, groperscrange perchOPE8Epigonus denticulatuswhite cardinalfishEPD4E. lenimenbigeye cardinalfishEPL11E. machaerathin tongue cardinalfishEPM17E. robustusrobust cardinalfishERB8E. telescopusdeepsea cardinalfishEPT17	Congiopodidae: pigfishes			
Lepidotrigla brachyopterascaly gurnardSCG9Hoplichthyidae: ghostflatheadsHoplichthys haswellideepsea flatheadFHD26Psychrolutidae: toadfishesAmbophthalmos angustuspale toadfishTOP16Cottunculus nudusbonyskull toadfishCOT1Neophrynichthys latusdark toadfishTOD1Psychrolutes microporosblobfishPSY1Percichthyidae: temperate bassesPolyprion americanusbass groperBAS1P. oxygeneioshapukuHAP9Serranidae: sea perches, gropers8Epigonidae: deepwater cardinalfishes4E. lenimenbigeye cardinalfishEPD4E. nachaerathin tongue cardinalfishEPM17E. robustusrobust cardinalfishERB8E. telescopusdeepsea cardinalfishEPT17	Congiopodus leucopaecilus	pigfish	PIG	1
Hoplichthyidae: ghostflatheadsFHD26Psychrolutidae: toadfishesAmbophthalmos angustuspale toadfishTOPAmbophthalmos angustusbonyskull toadfishCOTNeophrynichthys latusdark toadfishTODNeophrynichthys latusdark toadfishTODPsychrolutes microporosblobfishPSYPercichthyidae: temperate bassesPolyprion americanusbass groperBASP. oxygeneioshapukuHAP9Serranidae: sea perches, gropersLepidoperca aurantiaorange perchOPE8Epigonus denticulatuswhite cardinalfishEPD4E. lenimenbigeye cardinalfishEPL11E. machaerathin tongue cardinalfishERB8E. telescopusdeepsea cardinalfishERB8	Triglidae: gurnards			
Hoplichthys haswellideepsea flatheadFHD26Psychrolutidae: toadfishespale toadfishTOP16Cottunculus nudusbonyskull toadfishCOT1Neophrynichthys latusdark toadfishTOD1Psychrolutes microporosblobfishPSY1Percichthyidae: temperate bassesbass groperBAS1P. oxygeneioshapukuHAP9Serranidae: sea perches, gropersorange perchOPE8Epigonidae: deepwater cardinalfisheswhite cardinalfishEPD4E. lenimenbigeye cardinalfishEPL11E. machaerathin tongue cardinalfishEPM17E. robustusrobust cardinalfishERB8E. telescopusdeepsea cardinalfishEPT17		scaly gurnard	SCG	9
Psychrolutidae: toadfishesTOP16Ambophthalmos angustuspale toadfishTOP16Cottunculus nudusbonyskull toadfishCOT1Neophrynichthys latusdark toadfishTOD1Psychrolutes microporosblobfishPSY1Percichthyidae: temperate bassesbass groperBAS1P. oxygeneioshapukuHAP9Serranidae: sea perches, gropersorange perchOPE8Epigonidae: deepwater cardinalfisheswhite cardinalfishEPD4E. lenimenbigeye cardinalfishEPL11E. machaerathin tongue cardinalfishERB8E. robustusrobust cardinalfishERB8E. telescopusdeepsea cardinalfishEPT17	Hoplichthyidae: ghostflatheads			
Ambophthalmos angustuspale toadfishTOP16Cottunculus nudusbonyskull toadfishCOT1Neophrynichthys latusdark toadfishTOD1Psychrolutes microporosblobfishPSY1Percichthyidae: temperate bassesbass groperBAS1P. oxygeneioshapukuHAP9Serranidae: sea perches, gropersLepidoperca aurantiaorange perchOPE8Epigonidae: deepwater cardinalfishesE. lenimenbigeye cardinalfishEPL11E. machaerathin tongue cardinalfishEPM17E. robustusrobust cardinalfishERB8E. telescopusdeepsea cardinalfishEPT17		deepsea flathead	FHD	26
Cottunculus nudusbonyskull toadfishCOT1Neophrynichthys latusdark toadfishTOD1Psychrolutes microporosblobfishPSY1Percichthyidae: temperate basses1Polyprion americanusbass groperBAS1P. oxygeneioshapukuHAP9Serranidae: sea perches, gropersLepidoperca aurantiaorange perchOPE8Epigonidae: deepwater cardinalfishesE. lenimenbigeye cardinalfishEPD4E. nachaerathin tongue cardinalfishEPM17E. robustusrobust cardinalfishERB8E. telescopusdeepsea cardinalfishEPT17				
Neophrynichthys latusdark toadfishTOD1Psychrolutes microporosblobfishPSY1Percichthyidae: temperate basses1Percichthyidae: temperate bassesbass groperBAS1P. oxygeneiosbass groperBAS1P. oxygeneioshapukuHAP9Serranidae: sea perches, gropersLepidoperca aurantiaorange perchOPE8Epigonidae: deepwater cardinalfishesEpigonus denticulatuswhite cardinalfishEPD4E. lenimenbigeye cardinalfishEPL11E. machaerathin tongue cardinalfishEPM17E. robustusrobust cardinalfishERB8E. telescopusdeepsea cardinalfishEPT17			TOP	16
Psychrolutes microporosblobfishPSY1Percichthyidae: temperate bassesPolyprion americanusbass groperBAS1P. oxygeneioshapukuHAP9Serranidae: sea perches, gropers8Lepidoperca aurantiaorange perchOPE8Epigonidae: deepwater cardinalfishes4E. lenimenbigeye cardinalfishEPD4E. nachaerathin tongue cardinalfishEPM17E. robustusrobust cardinalfishERB8E. telescopusdeepsea cardinalfishEPT17				1
Percichthyidae: temperate bassesPolyprion americanusbass groperBAS1P. oxygeneioshapukuHAP9Serranidae: sea perches, gropers8Lepidoperca aurantiaorange perchOPE8Epigonidae: deepwater cardinalfishes4E. lenimenbigeye cardinalfishEPD4E. nachaerathin tongue cardinalfishEPM17E. robustusrobust cardinalfishERB8E. telescopusdeepsea cardinalfishEPT17				1
Polyprion americanusbass groperBAS1P. oxygeneioshapukuHAP9Serranidae: sea perches, gropersLepidoperca aurantiaorange perchOPE8Epigonidae: deepwater cardinalfishesEpigonus denticulatuswhite cardinalfishEPD4E. lenimenbigeye cardinalfishEPL11E. machaerathin tongue cardinalfishEPM17E. robustusrobust cardinalfishERB8E. telescopusdeepsea cardinalfishEPT17		blobfish	PSY	1
P. oxygeneioshapukuHAP9Serranidae: sea perches, gropersorange perchOPE8Lepidoperca aurantiaorange perchOPE8Epigonidae: deepwater cardinalfishes1Enimenbigeye cardinalfishEPD4E. lenimenbigeye cardinalfishEPL11E. robustusrobust cardinalfishEPM17E. robustusrobust cardinalfishERB8E. telescopusdeepsea cardinalfishEPT17				
Serranidae: sea perches, gropersorange perchOPE8Lepidoperca aurantiaorange perchOPE8Epigonidae: deepwater cardinalfishes4E. lenimenbigeye cardinalfishEPD4E. machaerathin tongue cardinalfishEPM11E. robustusrobust cardinalfishERB8E. telescopusdeepsea cardinalfishEPT17				
Lepidoperca aurantiaorange perchOPE8Epigonidae: deepwater cardinalfishesEpigonus denticulatuswhite cardinalfishEPD4E. lenimenbigeye cardinalfishEPL11E. machaerathin tongue cardinalfishEPM17E. robustusrobust cardinalfishERB8E. telescopusdeepsea cardinalfishEPT17		hapuku	HAP	9
Epigonidae: deepwater cardinalfishesEPD4Epigonus denticulatuswhite cardinalfishEPD4E. lenimenbigeye cardinalfishEPL11E. machaerathin tongue cardinalfishEPM17E. robustusrobust cardinalfishERB8E. telescopusdeepsea cardinalfishEPT17				
Epigonus denticulatuswhite cardinalfishEPD4E. lenimenbigeye cardinalfishEPL11E. machaerathin tongue cardinalfishEPM17E. robustusrobust cardinalfishERB8E. telescopusdeepsea cardinalfishEPT17		orange perch	OPE	8
E. lenimenbigeye cardinalfishEPL11E. machaerathin tongue cardinalfishEPM17E. robustusrobust cardinalfishERB8E. telescopusdeepsea cardinalfishEPT17				
E. machaerathin tongue cardinalfishEPM17E. robustusrobust cardinalfishERB8E. telescopusdeepsea cardinalfishEPT17				
E. robustusrobust cardinalfishERB8E. telescopusdeepsea cardinalfishEPT17				
<i>E. telescopus</i> deepsea cardinalfish EPT 17				
1 1				
<i>Rosenblattia robusta</i> rotund cardinalfish ROS 6				
	Kosenblattia robusta	rotund cardinalfish	ROS	6

Scientific name	Common name	Species	Occ.
Carangidae: trevallies, kingfishes			
Trachurus declivis	greenback jack mackerel	JMD	1
T. murphyi	slender jack mackerel	JMM	4
Bramidae: pomfrets	5		
Brama australis	southern Ray's bream	SRB	29
B. brama	Ray's bream	RBM	1
Emmelichthyidae: bonnetmouths, rovers	•		
Emmelichthys nitidus	redbait	RBT	3
Plagiogeneion rubiginosum	rubyfish	RBY	2
Pentacerotidae: boarfishes, armourheads			
Pentaceros decacanthus	yellow boarfish	YBO	1
Pseudopentaceros richardsoni	southern boarfish	SBO	1
Cheilodactylidae: tarakihi, morwongs			
Nemadactylus macropterus	tarakihi	NMP	4
Zoarcidae: eelpouts			
Melanostigma gelatinosum	limp eel pout	EPO	2
Uranoscopidae: armourhead stargazers			
Kathetostoma giganteum	giant stargazer	GIZ	47
Pinguipedidae: sandperches, weevers			
Parapercis gilliesi	yellow cod	YCO	1
Gempylidae: snake mackerels			
Rexea solandri	gemfish	RSO	1
Thyrsites atun	barracouta	BAR	6
Trichiuridae: cutlassfishes			
Lepidopus caudatus	frostfish	FRO	5
Scombridae: mackerels, tunas			
Scomber australasicus	blue mackerel	EMA	1
Centrolophidae: raftfishes, medusafishes			
Centrolophus niger	rudderfish	RUD	8
Hyperoglyphe antarctica	bluenose	BNS	5
Seriolella caerulea	white warehou	WWA	51
S. punctata	silver warehou	SWA	53
Tubbia tasmanica	Tasmanian ruffe	TUB	2
Nomeidae: eyebrowfishes, driftfishes		CLID	2
<i>Cubiceps</i> spp.	cubehead	CUB	3
Tetragonuridae: squaretails			•
Tetragonurus cuvieri	squaretail	TET	2
Achiropsettidae: southern flounders		NANT	<i>(</i>
Neoachiropsetta milfordi	finless flounder	MAN	6
Bothidae: lefteyed flounders	witch	WIT	<i>c</i>
Arnoglossus scapha	witch	WIT	6
Pleuronectidae: righteyed flounders Pelotretis flavilatus	lemon sole	LSO	10
i elottetis juvitatus		LSU	10

Appendix 3: Scientific and common names of mesopelagic and benthic invertebrates identified following
the voyage.

ľ	NIWA No.	Cruise/station_no.	Phylum	Class	Order	Family	Genus	Species
1	26917	TAN1801/13	Annelida	Polychaeta	Eunicida	Eunicidae	Eunice	sp.
1	26892	TAN1801/37	Arthropoda	Malacostraca	Decapoda	Aristeidae	Austropenaeus	nitidus
1	26881	TAN1801/25	Arthropoda	Malacostraca	Decapoda	Chirostylidae	Uroptychus	sp.
1	26879	TAN1801/25	Arthropoda	Malacostraca	Decapoda	Goneplacidae	Pycnoplax	victoriensis
1	26928	TAN1801/13	Arthropoda	Malacostraca	Decapoda	Homolidae	Dagnaudus	petterdi
1	26872	TAN1801/122	Arthropoda	Malacostraca	Decapoda	Lithodidae	Paralomis	zealandica
1	26895	TAN1801/67	Cnidaria	Anthozoa	Alcyonacea	Alcyoniidae	Heteropolypus	sp.
1	26913	TAN1801/129	Cnidaria	Anthozoa	Alcyonacea	Isididae	Keratoisis	sp.
1	26870	TAN1801/25	Cnidaria	Anthozoa	Alcyonacea	Primnoidae	Narella	hypsocalyx
1	26957	TAN1801/48	Cnidaria	Anthozoa	Alcyonacea	Primnoidae	Thouarella	sp.
1	26932	TAN1801/2	Cnidaria	Anthozoa	Pennatulacea	Halipteridae	Halipteris	willemoesi
1	26920	TAN1801/3	Cnidaria	Anthozoa	Pennatulacea	Pennatulidae	Pennatula	sp.
1	26964	TAN1801/97	Cnidaria	Anthozoa	Pennatulacea	Protoptilidae	Distichoptilum	gracile
1	26965	TAN1801/129	Cnidaria	Anthozoa	Pennatulacea	Virgulariidae	Stylatula	austropacifica
1	26915	TAN1801/48	Cnidaria	Anthozoa	Scleractinia	Caryophylliidae	Caryophyllia	profunda
1	26894	TAN1801/25	Cnidaria	Anthozoa	Scleractinia	Caryophylliidae	Desmophyllum	dianthus
1	26923	TAN1801/13	Cnidaria	Anthozoa	Scleractinia	Caryophylliidae	Desmophyllum	dianthus
1	26927	TAN1801/14	Cnidaria	Anthozoa	Scleractinia	Caryophylliidae	Desmophyllum	dianthus
1	26926	TAN1801/13	Cnidaria	Anthozoa	Scleractinia	Caryophylliidae	Goniocorella	dumosa
1	26929	TAN1801/14	Cnidaria	Anthozoa	Scleractinia	Caryophylliidae	Goniocorella	dumosa
	26963	TAN1801/74	Cnidaria	Anthozoa	Scleractinia	Caryophylliidae	Goniocorella	dumosa
	26966	TAN1801/48	Cnidaria	Anthozoa	Scleractinia	Caryophylliidae	Goniocorella	dumosa
	26887	TAN1801/91	Cnidaria	Anthozoa	Scleractinia	Flabellidae	Flabellum	knoxi
	26919	TAN1801/15	Cnidaria	Hydrozoa	Anthoathecata	Stylasteridae	Calyptopora	reticulata
	26930	TAN1801/14	Cnidaria	Hydrozoa	Anthoathecata	Stylasteridae	Calyptopora	reticulata
	26622	TAN1801/48	Cnidaria	Hydrozoa	Anthoathecata	Stylasteridae	Errina	sp.
	26889	TAN1801/25	Cnidaria	Hydrozoa	Leptothecata	Lafoeidae	Acryptolaria	sp.
	26914	TAN1801/48	Cnidaria	Hydrozoa	Leptothecata	Lafoeidae	Cryptolaria	prima
	26873	TAN1801/74	Echinodermata		Forcipulatida	Stichasteridae	Pseudechinaster	rubens
	26967	TAN1801/122	Echinodermata		Valvatida	Goniasteridae	Hippasteria	phrygiana
	26968	TAN1801/26	Echinodermata		Valvatida	Goniasteridae Echinidae	Hippasteria	phrygiana
	26924 26888	TAN1801/14	Echinodermata Echinodermata		Camarodonta Camarodonta	Echinidae	Dermechinus Echinus	horridus multidentatus
	26886	TAN1801/125 TAN1801/74	Echinodermata		Cidaroida	Histocidaridae	Histocidaris	
	26871	TAN1801/98	Echinodermata		Euryalida	Gorgonocephalidae		sp.
	26931	TAN1801/38	Echinodermata		Euryalida	Gorgonocephalidae	· ·	sp.
	26971	TAN1801/15	Echinodermata	1	Euryalida	Gorgonocephalidae		sp. sp.
	26970	TAN1801/25	Echinodermata	1	Euryalida	Gorgonocephalidae		sp.
	26925	TAN1801/14	Mollusca	Bivalvia	Limida	Limidae	Acesta	maui
	26921	TAN1801/1	Mollusca	Bivalvia	Mytilida	Mytilidae	Perna	sp.
	26972	TAN1801/103	Mollusca	Cephalopoda	Octopoda	Octopodidae	Octopus	sp.
	26974	TAN1801/7	Mollusca	Cephalopoda	Oegopsida	Cranchiidae	Teuthowenia	pellucida
	28472	TAN1801/77	Mollusca	Cephalopoda	Oegopsida	Octopoteuthidae	Octopoteuthis	sp.
	26976	TAN1801/36	Mollusca	Cephalopoda	Oegopsida	Pholidoteuthidae	Pholidoteuthis	sp.
	26973	TAN1801/112	Mollusca	Cephalopoda	Sepiida	Sepiolidae	Iridoteuthis	maoria
	26975	TAN1801/25	Mollusca	Cephalopoda	Vampyromorphida	Vampyroteuthidae	Vampyroteuthis	infernalis
1	26877	TAN1801/25	Mollusca	Gastropoda	Neogastropoda	Buccinidae	Aeneator	recens
	26916	TAN1801/48	Porifera		Poecilosclerida	Crellidae	Crella	incrustans
	26885	TAN1801/77	Porifera	Demospongiae		Tetillidae	Tetilla	sp.
	26874	TAN1801/74	Porifera	Demospongiae	* *	Ancorinidae	Ecionemia	novaezealandiae
1	26874	TAN1801/74	Porifera	Demospongiae	Tetractinellida	Ancorinidae	Ecionemia	novaezealandiae
1	26896	TAN1801/48	Porifera	Demospongiae	Tetractinellida	Geodiidae	Geodia	vestigifera
1	26896	TAN1801/48	Porifera	Demospongiae	Tetractinellida	Geodiidae	Geodia	vestigifera
1	26969	TAN1801/25	Porifera	Hexactinellida	Lyssacinosida	Rossellidae	Caulophacus	cf. lotifolium

Appendix 4: Length ranges (cm) used to identify 1+, 2+ and 3++ hoki age classes to estimate relative biomass values given in Figure 6 1992 and 1993 length ranges were revised from those in Stevens et al. (2017).

Survey			Age group
	1+	2+	3++
Jan 1992	< 50	50 - 60	≥ 60
Jan 1993	< 50	50 - 60	≥ 60
Jan 1994	< 46	46 - 58	\geq 59
Jan 1995	< 46	46 - 58	\geq 59
Jan 1996	< 46	46 - 54	≥ 55
Jan 1997	< 44	44 - 55	≥ 56
Jan 1998	< 47	47 - 55	≥ 53
Jan 1999	< 47	47 - 56	≥ 57
Jan 2000	< 47	47 - 60	≥ 61
Jan 2001	< 49	49 – 59	≥ 60
Jan 2002	< 52	52 - 59	≥ 60
Jan 2003	< 49	49 - 61	≥ 62
Jan 2004	< 51	51 - 60	≥ 61
Jan 2005	< 48	48 - 64	≥ 65
Jan 2006	< 49	49 - 62	≥ 63
Jan 2007	< 48	48 - 62	≥ 63
Jan 2008	< 49	49 – 59	≥ 60
Jan 2009	< 48	48 - 61	≥ 62
Jan 2010	< 48	48 - 61	≥ 62
Jan 2011	< 48	48 - 61	≥ 62
Jan 2012	< 49	49 – 59	≥ 60
Jan 2013	< 47	47 - 54	≥ 55
Jan 2014	< 48	48 - 60	≥ 61
Jan 2016	< 49	49 - 62	≥ 62
Jan 2018	< 48	48 - 59	\geq 59